Single Nucleotide Polymorphisms in Bison bison Identified by the GGP Bovine 50K SNP Assay

Authors

  • Alexandru Eugeniu Mizeranschi Research and Development Station for Bovine - Arad, 310059, Arad, Bodrogului 32, Romania
  • Ion Adrian Oprea Banat’s University of Agricultural Sciences and Veterinary Medicine ‘King Michael I of Romania’ from Timisoara, 300645, Timisoara, Calea Aradului 119, Romania
  • Stelian Acatincai Banat’s University of Agricultural Sciences and Veterinary Medicine ‘King Michael I of Romania’ from Timisoara, 300645, Timisoara, Calea Aradului 119, Romania
  • Radu Ionel Neamţ Research and Development Station for Bovine - Arad, 310059, Arad, Bodrogului 32, Romania
  • Ciprian Valentin Mihali Research and Development Station for Bovine - Arad, 310059, Arad, Bodrogului 32, Romania
  • Daniela Elena Ilie Banat’s University of Agricultural Sciences and Veterinary Medicine ‘King Michael I of Romania’ from Timisoara, 300645, Timisoara, Calea Aradului 119, Romania

Keywords:

GGP Bovine 50K, Bison bison, single-nucleotide polymorphism

Abstract

The vulnerable populations of bison had gone through a drastic reduction in population size, have undergone a very high level of inbreeding and have been through severe bottlenecks. Using a panel of Single Nucleotide Polymorphisms (GGP Bovine 50K SNP arrays, Neogen) developed across the entire bovine (Bos taurus) genome, we have carried out a genome variability screening on a bison (Bison bison) population in Romania. Eight males were included in the analysis. As part of SNP quality control filtering, one individual with a call rate below 80% was removed from the study. From a total of 47,843 SNPs only 4474 were polymorphic (9.35% from the total) and 7 individuals (out of a total of 8) were left after PLINK's quality control filtering. The total call rate of genotyped samples was 90.11% for the filtered dataset. A secondary PLINK run was performed on the 4474 filtered SNPs to find the ones whose HWE p-value fell below 0.05 and 100 markers were highlighted in this way. The results showed a larger number of polymorphic SNPs compared with previous studies from the literature. In addition, the data obtained using the GGP Bovine 50K SNP arrays may facilitate the design of breeding strategies that can be applied for decreasing unwanted inbreeding effects in the vulnerable bison populations.

References

Soubrier, J., Gower, G., Chen, K., Richards S.M., Llamas, B., Early cave art and ancient DNA record the origin of European bison, Nature Communications, 2016, 7, 13158.

Halbert, N.D., Ward, T.J., Schnabel, R.D., Taylor, J.F., Derr, J.N., Conservation genomics: disequilibrium mapping of domestic cattle chromosomal segments in North American bison populations, Molecular Ecology, 2005, 14, 2343–62.

MacEachern, S., McEwan, J., McCulloch, A., Mather, A., Savin, K., & Goddard, M., Molecular evolution of the Bovini tribe (Bovidae, Bovinae): is there evidence of rapid evolution or reduced selective constraint in Domestic cattle? BMC Genomics, 2009, 10, 179.

Isenberg A.C., The Destruction of the Bison: An Environmental History, 1750-1920, Princeton University, New Jersey, Cambridge University Press, 2000.

Pucek, Z., Belousova, I.P., Krasiñska, M., Krasiñski, Z.A. and Olech, W., European Bison. Status Survey and Conservation Action Plan. IUCN/SSC Bison Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK, 2004.

Pucek, Z., History of the European bison and problems of its protection and management. In: Bobek B, Perzanowski K, Regelin W (eds) Global trends in wildlife management. Trans.18th IUGB Congress, Kraków 1987. S ́wiat Press, Kraków-Warszawa, 1991, pp. 19–39

Olech, W., (IUCN SSC Bison Specialist Group) Bison bonasus. The IUCN Red List of Threatened Species, 2008, e.T2814A9484719.

Vasile, M., The Vulnerable Bison: Practices and Meanings of Rewilding in the Romanian Carpathians, Conservation and Society, 2018, 16(3), 217-231.

Malgorzata, K., Zbigniew A. K., European Bison: The Nature Monograph, Springer-Verlag Berlin Heidelberg, 2013

Bovine Genome Sequencing and Analysis Consortium, Elsik, C.G, Tellam, R.L, Worley, K.C, et al., The genome sequence of taurine cattle: a window to ruminant biology and evolution, Science, 2009, 324, 522-528.

Zimin A.V., Delcher A.L., Florea L., Kelley D.R., Schatz M.C., Puiu D., Hanrahan F. et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biology, 2009, 10(4), R42.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J. & Sham, P.C., PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 2007, 81.

Morgan, A.P., argyle: an R package for analysis of Illumina genotyping arrays. G3, 2015, 6: 281-286.

The Bioconductor Dev Team, BSgenome.Btaurus.UCSC.bosTau8: Full genome sequences for Bos taurus (UCSC version bosTau8), 2015. R package version 1.4.2.

Lawrence. M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M., Carey, V., Software for Computing and Annotating Genomic Ranges. PLoS Computational Biology, 2013, 9.

Gel, B., Serra, E., karyoploteR: an R / Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics, 2017, 33(19), 3088-3090.

Oliphant, A., Barker, D.L., Stuelpnagel, J.R., Chee, M.S., BeadArray (TM) Technology: Enabling an Accurate, Cost-Effective Approach to High-Throughput Genotyping. Biotechniques, 2002, 32, 56-61.

Illumina Inc., 2005, Illumina GenCall Data Analysis Software. GenCall software algorithms for clustering, calling, and scoring genotypes. Illumina Inc., San Diego, CA, USA, Pub. No. 370-2004-009.

More, M., Gutiérrez, G., Rothschild, M., Bertolini, F., Ponce de León, F.A., Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip, Frontiers in Genetics, 2019 10, 361.

Loftus, R.T., MacHugh, D.E., Bradley, D.G., Sharp, P.M., Cunningham, E.P., Evidence for two independent domestications of cattle, Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2757-2761.

Pertoldi, C., Tokarska, M., Wójcik, J.M., Demontis, D., Loeschcke, V., Gregersen, V.R., Coltman, D., Wilson, G.A., Randi, E., Hansen, M.M., Bendixen C., Depauperate genetic variability detected in the American and European bison using genomic techniques. Biology Direct. 2009, doi:10.1186/1745-6150-4-48

Kaminski, S., Olech, W., Olenski, K., Nowak, Z., Rusc, A., Single nucleotide polymorphisms between two lines of European bison (Bison bonasus) detected by the use of Illumina Bovine 50 K BeadChip, Conservation Genet Resour, 2012, 4, 311–314.

Pertoldi C., Wójcik, J.M., Tokarska, M., Kawalko, A., Kristensen, T.N., Loeschcke, V., Gregersen, V.R., Coltman, D., Wilson, G.A., Randi, E., Henryon, M. Bendixen, C., Genome variability in European and American bison detected using the BovineSNP50 BeadChip. Conservation Genetics, 2010, 11, 627–634.

Tokarska, M., Marshall, T., Kowalczyk, R., Wójcik, J. M., Pertoldi, C., Kristensen, T.N., Loeschcke, V., Gregersen, V.R., Bendixen, C., Effectiveness of microsat- ellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison, Heredity, 2009, 103, 326–332.

Downloads

Published

2023-09-05