Identification of Concentration Dependent in vitro effect of Bisphenol F on H295R Cell Viability, Membrane Integrity and Lysosomal Function

Authors

  • Nikola Knizatova Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Hana Greifova Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Katarina Tokarova Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Tomas Jambor Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Norbert Lukac Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia

Keywords:

endocrine disruptors, BPF, H295R, viability, membrane integrity, lysosomal function

Abstract

In recent years, the use of Bisphenol A (BPA) has been regulated in many countries because of its potential adverse effects on human health. As a result of the restriction, structural analogues such as bisphenol F (BPF) have already been used for industrial applications as alternatives to BPA. Although much information on the endocrine activity of BPA is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. The aim of our in vitro study was to assess the potential effect of BPF on H295R cell viability, membrane integrity and lysosomal function. Adrenocortical carcinoma cells were cultivated during 24 h in the presence of BPF (0.1, 0.5, 1, 10, 25, 50, 75, 100, 300, 500 μM). Metabolic activity decreased with increasing dose of BPF - from 10 μM (84.33 ± 4.31%). A significant increase in metabolic activity after 24 hours of exposure was observed after cultivation with 0.1 μM BPF (111.50 ± 3.89%) and a slight was observed after cultivation with 1 μM BPF (101,70 ± 1.61%). Exposure doses of BPF caused a slight increase in esterase activity at the lowest concentrations and a significant decrease at higher concentrations. We observed a slight increase in lysosomal function after cultivation with 0.1 and 1 μM, higher exposure doses (25 - 500 μM) caused decrease in lysosomal function. The obtained results confirmed that BPF at higher concentrations caused cytotoxicity. A substitution of BPA by BPF should be thus considered with caution.

References

Thoene, M., Dyika, E., Gonkowski, S., Wojtkiewicz, J. Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review. 2020. Nutrients, 12 (2), 532. Doi: 10.3390/nu12020532

Beronius A., Ruden C., Hakansson H., Hanberg A. Risk to all or none? A comparativeanalysis of controversies in the health risk assessment of Bisphenol. 2010. A. Reprod. Toxicol., 29, 132–146. doi: 10.1016/j.reprotox.2009.11.007.

Birnbaum L.S., Bucher J.R., Collman G.W., Zeldin D.C., Johnson A.F., Schug T.T., Heindel J.J. Consortium-based science: The NIEHS’s multipronged, collaborative approach to assessing the health effects of bisphenol A. 2012. Environ. Health Perspect., 120, 1640–1644. doi: 10.1289/ehp.1205330. 4. Vandenberg L.N., Ehrlich S., Belcher S.M., Ben-Jonathan N., Dolinoy D.C., Hugo E.R., Hunt P.A., Newbold R.R., Rubin B.S., Saili K.S., et al. Low dose effects of bisphenol A. Endocrine Disruptors. 2013, 1:e26490. doi: 10.4161/endo.26490.

Office of Environmental Health Hazard Assessment. 2012. Biomonitoring California: p,p’-Bisphenols and Diglycidyl Ethers of p,p’-Bisphenols. Available: http://www.oehha.ca.gov/multimedia/biomon/ pdf/041113Bisphenols_priority.pdf.

Liao, C.; Kannan, K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. 2014. Arch. Environ. Contam. Toxicol., 67 (1), 50−59.

Liao C., Liu F., Alomirah H., Loi V.D., Mohd M.A., Moon H.B., Nakata H., Kannan K. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures. 2012. Environ. Sci. Technol., 46, 6860–6866. doi: 10.1021/es301334j.

Liao, C.; Kannan, K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. 2013. J. Agric. Food Chem., 61 (19), 4655−4662.

Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J., Wenzel, A. Occurrence of phthalates and bisphenol A and F in the environment. 2002. Water Res., 36, 1429–1438.

Song, S., Song, M., Zeng, L., Wang, T., Liu, R., Ruan, T., et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China. 2014. Environ Pollut., 186, 14–19.

Yang, Y., Lu, L., Zhang, J., Yang, Y., Wu, Y., Shao, B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. 2014. J Chromatogr A, 1328, 26–34.

Zhou X, Kramer JP, Calafat AM, Ye X. Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol A, bisphenol F, bisphenol S, and 11 other phenols in urine. 2014. J Chromatogr B Analyt Technol Biomed Life Sci., 944, 152–156.

Rochester, J. R., & Bolden, A. L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. 2015. Environmental Health Perspectives. doi: 10.1289/ehp. 1408989.

Schirmer, K., Chan, A. G. J., Greenberg, B. M., Dixon, D. G., Bols, N. C. Methodology for Demonstrating and Measuring the Phototcytotoxicity of Floranthene to Fish Cells in Culture. 1997. Toxicol. In Vitro, 11, 107–119. DOI: 10.1016/S0887-2333(97) 00002-7.

Hecker, M., Giesy, P. J., Novel trends in endocrine disruptor testing: the H295R Steroidogenesis Assay for identification of inducers and inhibitors of hormone production. Anal Bioanal Chem. 2007. doi: 10.1007/s00216-007-1657-5.

Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y.-L., Wu, Y., & Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. 2016. Environmental Science & Technology, 50 (11), 5438–5453. doi:10.1021/acs.est.5b05387

Wu L. H., Zhang X. M., Wang F., Gao C. J., Chen D., Palumbo J. R., Guo Y., Zeng E. Y. Occurrence of bisphenol S in the environment and implications for human exposure: A short review. 2017. Sci. Total Environ., 615:87–98. doi: 10.1016/j.scitotenv.2017. 09.194.

Liao, C., Liu, F., Alomirah, H., Loi, V. D., Mohd, M. A., Moon H. B., Nakata, H., Kannan, K. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures. 2012. Environ. Sci. Technol., 46:6860–6866. doi: 10.1021/ es301334j.

Cabaton, N., Zalko, D., Rathahao, E., Canlet, C., Delous, G., Chagnon, M. C. , et al. Biotransformation of bisphenol F by human and rat liver subcellular fractions. 2008. Toxicol In Vitro, 22, 1697–1704.

Dumont, C., Perdu, E., De Sousa, G., Debrauwer, L., Rahmani, R., Cravedi, J. P., et al. Bis(hydroxyphenyl)methane-bisphenol F-metabolism by the HepG2 human hepatoma cell line and cryopreserved human hepatocytes. 2011. Drug Chem Toxicol, 34, 445–453.

Cabaton, N., Chagnon, M. C., Lhuguenot, J. C., Cravedi, J. P., Zalko, D. Disposition and metabolic profiling of bisphenol F in pregnant and nonpregnant rats. 2006. J Agric Food Chem, 54, 10307–10314.

Vandenberg, L. N., Hunt, P. A., Myers, J. P., Vom Saal, F. S. Human exposures to bisphenol A: mismatches between data and assumptions. 2013. Rev Environ Health, 28, 37–58.

Audebert, M., Dolo, L., Perdu, E., Cravedi, J. P., Zalko, D. Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. 2011. Arch Toxicol, 85, 1463–1473.

Cabaton, N., Dumont, C., Severin, I., Perdu, E., Zalko, D,, Cherkaoui-Malki, M., et al. Genotoxic and endocrine activities of bis(hydroxyphenyl)methane (bisphenol F) and its derivatives in the HepG2 cell line. 2009. Toxicology, 255, 15–24.

Lee, S., Liu, X., Takeda, S., Choi, K. Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds: a comparison study employing chicken DT40 cells. 2013. Chemosphere, 93, 434–440.

Nakagawa, Y., Tayama, S. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. 2000. Arch Toxicol, 74, 99–105.

Pisapia, L., Del Pozzo, G., Barba, P., Caputo, L., Mita, L., Viggiano, E., et al. Effects of some endocrine disruptors on cell cycle progression and murine dendritic cell differentiation. 2012. Gen Comp Endocrinol, 178, 54–63.

Fic, A., Žegura, B., Sollner Dolenc, M., Filipic, M., Peterlin Masic, L. Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells. 2013. Arh Hig Rada Toksikol, 64, 3–14.

Satoh, K., Ohyama, K., Aoki, N., Iida, M., Nagai, F. Study on anti-androgenic effects of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives using cells stably transfected with human androgen receptor, AR-EcoScreen. 2004. Food Chem Toxicol, 42, 983–993.

Russo, G., Capuozzo, A., Barbato, F., Irace, C., Santamaria, R., Grumetto, L. Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data. 2018. Chemosphere, 201, 432-440. doi: 10.1016/j. chemosphere.2018.03.014.

Castro, B., Sanchez, P., Torres, J. M., Ortega, E. Bisphenol A, ́ bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. 2015. Environ. Res., 142, 281−287.

Downloads

Published

2023-09-05