Use of HT-29 Cell Line to Investigate Toxicological Effects of Mycotoxins: a Mini Review

Authors

  • Rudolf Dupak Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Ivana Spevakova Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Marcela Capcarova Slovak University of Agriculture in Nitra, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia

Keywords:

cell viability, HT-29, mycotoxins, oxidative stress

Abstract

HT-29 is the human colon adenocarcinoma cell line mostly used to study human colon cancers. Because of its ability to resemble mature intestinal cells, its use is wide. HT-29 cell line is a suitable in vitro model for intestinal cells to monitor the toxicity of mycotoxins, because these cells correspond to one of the main organs of action of mycotoxins. The main studied parameters of the effects of mycotoxins on HT-29 cell line include cell viability, cell apoptosis or necrosis, oxidative damage, immunotoxicity and macromolecule synthesis. In this review we provide an introduction to HT-29 cell line and its use for research of toxicological effects of mycotoxins, which represents an important food contaminant.

References

Pleadin, J., Frece, J., Markov, K., Mycotoxins in food and feed. Adv. food nutr. res. 2019, doi: 10.1016/bs.afnr.2019.02.007.

Zhou, H., George, S., Hay, C., Lee, J., Qian, H., Sun, X., Individual and combined effects of aflatoxin B1, deoxynivalenol and zearalenone on HepG2 and RAW 264.7 cell lines. Food Chem. Toxicol. 2017, doi: 10.1016/j.fct.2017.02.017.

Park, W., Park, M. Y., Song, G., Lim, W., Exposure to aflatoxin B1 attenuates cell viability and induces endoplasmic reticulum-mediated cell death in a bovine mammary epithelial cell line (MAC-T). Toxicol in vitro. 2019, doi: 10.1016/j.tiv.2019.104591.

Berg, K. C. G., Eide, P. W., Eilertsen, I. A., Johannessen, B., Bruun, J., Danielsen, S. A., Bjornslett, M., Meza-Zepeda, L. A., Eknaes, M., Lind, G. E., Myklebost, O., Skotheim, R. I., Sveen, A., Lothe, R. A., Multi-omics of 34 colorectal cancer cell lines – a resource for biomedical studies. 2017, doi: 10.1186/s12943-017-0691-y.

Assuncao, R., Martins, C., Dupont, D., Alvito, P., Patulin and ochratoxin a co-occurrence and their bioaccessibility in processed cereal-based foods: a contribution for Portuguese children risk assessment. Food Chem. Toxicol. 2016, doi: 10.1016/j.fct.2016.08.004.

Bouhet, S., Hourcade, E., Loiseau, N., Fikry, A., Martinez, S., The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells, Toxicol. Sci., 2004, 77, 165-171.

Bennet, J. W., Mycotoxins, mycotoxicoses, mycotoxicology and mycopathologia, Mycopathologia, 1987, 100, 3-5.

Frisvad, J. C., Thrane, U., Samson, R. A., Pitt, J. I., Important mycotoxins and the fungi which produce them, Adv. Exp. Med. Biol., 2006, 571, 3-31.

Bennet, J. W., Klich, M., Mycotoxins, Clin. Microbiol. Rev., 2003, 16, 497-516.

Xu, L., Zhang, Z., Zhang, Q., Li, P., Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins. 2016, doi: 10.3390/toxins8080239.

Alshannaq, A., Yu, J. H., Occurrence, toxicity, and analysis of major mycotoxins in food. In. J. Environ. Res. Pub. Health. 2017, doi: 10.3390/ijerph14060632.

Dupak, R., Schneidgenova, M., Kalafova, A., Bovdisova, I., Kisska, P., Capcarova, M., The effects of mycotoxins on animal organism. In: Recenzovany zbornik vedeckych prac Slovenskej spolocnosti pre polnohospodarske, lesnicke, potravinarske a veterinarske vedy pri Slovenskej akademii vied, pobočka Nitra. B. Galik et al., SPU: Nitra, 2018, pp. 44-52.

Robert, H., Payros, D., Pinton, P., Theodorou, V., Medcier-Bonin, M., Oswald, I. P., Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J. Toxicol. Environ. Health B Crit. Rev., 2017, 20, 249-275.

Maqueda, D. M., Miralles, B., Recio, I., HT29 cell line. In: The impact of food bioactives on health: in vitro and ex vivo models. Verhoeckx, K., Cotter, P., López-Expósito, I., Springer, 2015, pp. 113-124.

Smith, M., Madec, S., Coton, E., Hymery, N., Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins. 2016, doi: 10.3390/toxins8040094.

Fernández, B. C., Elmo, L., Waldner, T., Ruiz, M., Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2). Food Chem. Toxicol. 2018, doi: 10.1016/j.fct.2018.06.019.

Maresca, M., Manfoud, R., Garmy, N., Fantini, J., The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J. Nutri. 2002, doi: 10.1093/jn/132.9.2723.

Favero, D. G., Woelflingseder, L., Braun, D., Puntscher, H., Kutt, M., Dellafiora, L., Warth, B., Pahlke, G., Dallasta, C., Adam, G., Marko, D., Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicol. Lett. 2018, doi: 10.1016/j.toxlet.2018.07.007.

Dupak, R., The effect of mycotoxins on HT-29 cell line. XVII. Int. Sci. Conf. Bachelor Master Deg. stud., SPU, Nitra, 2019, pp. 46.

Wu, C., Gao, Y., Li, S., Huang, X., Bao, X., Wang, J., Zheng, N., Modulation of intestinal epithelial permeability and mucin mRNA (MUC2, MUC5AC, and MUC5B) expression and protein secretion in Caco-2/HT29-MTX co-cultures exposed to aflatoxin M1, ochratoxinA, and zearalenone individually or collectively. Toxicol. Lett. 2019, doi: 10.1016/j.toxlet.2019.03.010.

Kalaiselvi, P., Rajashree, K., Priya, L. B., Padma, V. V., Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem. Toxi. 2013, 56, 110-118.

Krishnaswamy, R., Devaraj, S. N., Padma, V. V., Lutein protects HT-29 cells against Deoxynivalenol-induced oxidative stress and apoptosis: Prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and Cyclo-Oxygenase-2 expression. Free Radic. Biol. Med. 2010, doi: 10.1016/j.freeradbiomed.2010.03.016.

Chen, J., Lou, Q., He, L., Wen, C., Lin, M., Zhu, Z., Wang, F., Huang, L., Lan, W., Iwamoto, A., Yang, X., Liu, H., Reduced-gliotoxin induces ROS-mediated anoikis in human colorectal cancer cells. Int. J. Oncol. 2018, doi: 10.3892/ijo.2018.4264.

Park, H. R., Ryoo, I. J., Choo, S. J., Hwang, J. H., Kim, J. Y., Cha, M. R., Ya, K. S., Yoo, I. D., Glucose-deprived HT-29 human colon carcinoma cells are sensitive to verrucosidin as a GRP78 down-regulator. Toxicology. 2007, doi: 10.1016/j.tox.2006.11.049.

Downloads

Published

2023-09-05