Epigenetics and Metabolism – an Interesting Relation
Keywords:
epigenetic, biotechnology, metabolismAbstract
In biotechnologies, genetics is an important issue in preserving the animal and plant species, and also in medical diagnostic. Epigenetic is one branch of genetics that studies the variation of phenotypic traits which can be the consequences of different factors, especially the environmental factors. And, because of the epigenetic is dealing with the gens, which are biochemically defined by proteins' metabolism, we can say that there is a special inter-relation between epigenetic and metabolism. Changes in the metabolism of some biochemical compounds can be transferred to gene expression – which can be also altered. The latest experimental studies published in different scientific journals proved that epigenetic is closely related to the phenotypic traits and to the environment.
References
Holliday R., Pugh J., DNA modification mechanisms and gene activity during development. Science 187, 226–232, 1975
Dalinoy D.C., Faulk C., Introduction: the use of animals models to advance epigenetic science, ILAR Journal, Dec. 53(3-4), 227-231, 2012.
Wolffe A., Matzke M., Epigenetics: Regulation through repression. Science, 286, 481-486, 1999.
Murrell A., Rakyan V.K., Beck S., From genome to epigenome, Hum. Mol. Genet. Apr. 15, 14 Spec. No. 1, R3-R10, 2005.
Dronca D., Ameliorarea genetică a populaţiilor de animale. Editura Mirton, 2007.
Dronca D., Genetica populatiilor si genetica cantitativa – bazele stiintifice ale ameliorarii animalelor, Ed. Mirton, Timisoara, 2018.
Ivancia M., Ameliorarea animalelor, Ed. Alfa, Iasi, 2007.
Pacala N., Corin N., Bencsik I., Dronca D., The induce of superovulation to embryo donor cows with
double implant of norgestomet and FSH, Savremena poljoprivreda Novi-Sad, Yugoslavia, 2003.
Park M., Kim C., Yang J., Lee H., Shin W., Kim S., Sa T., Isolation and characterization of diazotrophic growth promotion bacteria from rhizosphere of agricultural crops of Korea, Microbiological Research, 160(2), 127-133, 2005.
Vinsky M.D., Murdoch G.K., Dixon W.T., Dyck M.K., Foxcroft G.R., Altered epigenetic variance in surviving litters from nutritionally restricted lactating
primiparous sows, Reproduction, Fertility and Development, 19(3), 430-435, 2007.
Karrow N.A., Sharma B.S., Fisher R.E., Mallard B.A., Chapter 4.31. Epigenetics and Animal Health, in Comprehensive Biotechnology, 2nd ed., Waltham M.A. – Editor, Elsevier B.V., 381-393, 2011.
Norouzitallab P., Baruah K., Vanrompay D., Bossier P., Can epigenetics translate environmental cues into phenotypes?, Science of the Total Environment, 647, 1281-1293, 2019.
Noble D., Jablonka E., Omholt S.W., Aviv R., Evolution evolves: physiology returns to centre stage, J. Physiol. 592, 2237-2244, 2014.
Pigliucci M., Murren C.J., Schlichting C.D., Phenotypic plasticity and evolution by genetic assimilation, J. Exp. Biol., 209, 2362-2367, 2006.
Fernandez-Morera J.L., Calvanese V., Rodriguez-Rodero S., Monendez-Torre E., Fraga M.F., Epigenetic regulation of the immune system in health and disease, Tissue Antigens, 76, 431-439, 2010.
Norouzitallab P., Baruah K., Vandegehuchte M., Stappen G.V., Catalia F., Bussche J.V., Vanhaecke L., Sorgeloos P., Bossier P., Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model, The Federation of American Societes for Experimental Biology (FASEB) Journal, 28(8), 3552-3563, 2014.
Keating S.T., El-Osta A., Epigenetics and Metabolism, Circulation Research, 116(4), 715-736, 2015.
Mazzio E.A., Soliman K.F., Basic concepts of epigenetics: impact of environmental signals on gene expression, Epigenetics, 7, 119-130, 2012.
Keating S.T., El-Osta A., Glycemic memories and the epigenetic component of diabetic nephropathy, Curr. Diab. Rep., 13, 574-581, 2013.
Becker L.M., O’Connell J.T., Vo A.P., Cain M.P., Tampe D., Bizarro L., Sugimoto H., McGow A.K., Asara J.M., Lovisa S., McAndrews K.M., Zielinski R., Lorenzi P.L., Zeisberg M., Raza S., LeBleu V.S., Kalluri R., Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer, Cell Reports, 31(9), 107701, 2020.
Vanhees K., Vonhogen I.G., van Schooten F.J., Godschalk R.W., You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring, Cell Mol. Life Sci., 71, 271-285, 2014.
Ren R., Ocampo A., Liu G.H., Belmonte J.C.I., Regulation of stem cell aging by metabolism and epigenetics, Cell Metabolism, 26(3), 460-474, 2017.
Katada s., Imhof A., Sassone-Corsi P., Connecting threads: epigenetics and metabolism, Cell, 148, 24-28, 2012.
Thakur C., Chen F., Connections between metabolism and epigenetics in cancer, Seminars in Cancer Biology, 57, 52-58, 2019.
Muir A., Danai L.V., Vander Heiden M.G., Microenvironmental regulation of cancer cell metabolism: implications for experimental desing and translational studies, Dis. Model. Cech., 11(8), 2018.
Kaelin Jr. W.G., McKnight S.L., Influence of metabolism on epigenetics elicit big changes in gene expression, Trends Biochem. Sci., 37(11), 477-483, 2012.
Tzika E., Dreker T., Imhof A., Epigenetics and metabolism in health and disease, Front Genet., 9, 361, 2018.
Poirier M., Tesfaye D., Hailay T., Salilew-Wondim D., Gebremedhn S., Rings F., Neuhoff C., Schellander K., Hoelker M., Metabolism-associated genome-wide epigenetic changes in bovine oocytes during early lactation, Scientific reports, 10, Article no. 2345, 2020.