In vitro Evaluation of Some Probiotic Properties of Lactobacillus Strains Isolated from Chickens’ Gut
Keywords:
gastrointestinal resistance, in vitro properties, probioticAbstract
The objective of this study was to isolate, identify, and characterize new Lactobacillus strains with high probiotic potentials from the gastrointestinal tract of broiler chickens. The selected lactobacilli include five species: Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus salivarius and Lactobacillus plantarum. All strains were evaluated for their viability on selective medium, pH 3.0 tolerance and 0.3% bile salts for 3h. The strains IBNA 29 and IBNA 48 were the most resistant following exposure to gut conditions. After 3h of incubation, IBNA 29 registered a hight survival rate around 85% at low pH (8.50±0.176 log CFU/mL), respectively 90% (9.01±0.045 log CFU/mL) in the presence of bile salts; IBNA 48 showed a growth with 15.32% (8.027±0.04 CFU/mL), and 34.32% (6.22±0.242 CFU/mL), less at these useful traits. Taken together, the strain Lactobacillus salivarius IBNA 29 manifested the best resistance with the potential for use in the production of probiotic and can be a possible candidate for application as a feed additive in poultry nutrition.
References
Fuller, R., Probiotics in man and animals. J. Appl. Bacteriol., 1989, 66, pp. 365–378.
Shekh, S. L., Dave, J. M., and Vyas, B. R. M., Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production. Lwt, 2016, 74, pp. 234–241.
Tavakoli, M., Hamidi-Esfahani, Z., Hejazi, M.A., Azizi, M.H., and Abbasi, S. Characterization of probiotic abilities of lactobacilli isolated from Iranian koozeh traditional cheese, Polish J. Food Nutr. Sci., 2017, 67(1).
Rajoka, M. S. R., Hayat, H. F., Sarwar, S., Mehwish, H. M., Ahmad, F., Hussain, N., and Shi, J. Isolation and evaluation of probiotic potential of lactic acid bacteria isolated from poultry intestine. Microbiology, 2018, 87(1), pp. 116–126.
Pithva, S., Ambalam, P., Jayantilal, M. D., and Vyas, B. R., Potential of probiotic Lactobacillus strains as food additives.
Dumitru, M., Hăbeanu, M., Tabuc, C., and Jurcoane, Ș., Preliminary characterization of the probiotic properties of a bacterial strain for used in monogastric nutrition. Bulletin of the University of Agricultural Sciences and Veterinary Medicine, Animal Science and Biotechnologies, 2019, 76(2), pp. 102-108.
Kizerwetter-Świda, M., and Binek, M., Assessment of potentially probiotic properties of Lactobacillus strains isolated from chickens. Polish Journal of Veterinary Sciences, 2016, 19(1), pp. 15–20.
Brashears, M. M., Jaroni, D., and Trimble, J., Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J Food Prot., 2003, 66, pp. 355–63.
Walter, J., Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol., 2008, 74, 4985-4996.
Nishiyama, K., Seto, Y., Yoshioka, K., Kakuda, T., Takai, S., Yamamoto, Y., and Mukai, T., Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni. PLoS ONE, 2014, 9(9), e108827.
Xu, H., Jeong, H., Lee, H., and Ahn, J., Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett. Appl. Microbiol., 2009, 49(4), pp. 434-442.
Salminen, S., Nybom, S., Meriluoto, J., Collado, M. C., Vesterlund, S., and El-Nezami, H., Interaction of probiotics and pathogens—benefits to human health? Curr. Opin. Biotechnol., 2010, 21(2), pp. 157–67.
Altarugio, R., Vellano, I. H. B., Moraes, A. C. I., Milbradt, E. L., Andreatti Filho, R. L., Guimarães-Okamoto, P. T. C., and Okamoto, A. S., In vitro probiotic selection and characterization of Lactobacillus spp. isolated from healthy domesticated Turkeys. Journal of Applied Poultry Research, 2018, 27(1), pp. 81–91.
Sorescu, I., Dumitru, M., and Ciurescu, G., Lactobacillus spp. and Enterococcus faecium strains isolation, identification, preservation and quantitative determinations from turkey gut content. Rom. Biotechnol. Lett., 2019, 24(1), pp. 41-49.
Dumitru, M., Tabuc, C., and Jurcoane, Ș., Obtaining a feed additive based of Lactobacillus plantarum strain. Scientific Papers. Series A. Agronomy, 2018, 61(2), pp. 115-122.
Dumitru, M., Sorescu, I., Ciurescu, G., Tabuc, C., Habeanu, M., and Chelaru N. R., In vitro probiotic properties of a lactic acid bacteria isolated from a broiler chicken. Ed. Filodiritto -Proceedings, 2019, 1, pp. 326-332.
Ritter, A. C., Paula, A., Correa, F., Veras, F. F., and Brandelli, A., Characterization of Bacillus subtilis available as probiotics. J. of Microbiology Research, 2018, 8(2), pp. 23-32.
Stephenson, D. P., Moore, R. J., and Allison, G. E., Lactobacillus strain ecology and persistence within broiler chickens fed different diets: identification of persistent strains. Appl. Environ. Microbiol., 2010, 76, pp. 6494–6503.
Pedroso, A. A., and Lee, M. D., The composition and role of the microbiota in chickens. Theo Niewold. Wagenigan Academic Publishers, The Netherlands, intestinal health, 2015, pp. 21-50.
Mandal, H., Jariwala, R., and Bagchi, T., Isolation and characterization of lactobacilli from human faeces and indigenous fermented foods for their potential application as probiotics, Canad. J. Microbiol., 2015, 62(4), pp. 349–359.
Ahmed, Z., Vohra, M. S., Khan, M. N., Ahmed, A., and Khan, T. A., Antimicrobial role of Lactobacillus species as potential probiotics against enteropathogenic bacteria in chickens. The Journal of Infection in Developing Countries, 2019, 13(02), 130–136.
Hilmi, A., Hanan, T., Surakka, A., Apajalahti, J., and Saris, P. E. J., Identification of the most abundant Lactobacillus species in the crop of 1-and 5-week-old broiler chickens. Appl. Environ. Microbiol., 2007, 73, pp. 7867–7873.
Singh, T. P., Kaur, G., Malik, R. K., Schillinger, U., Guigas, C., and Kapila, S., Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicrob. Proteins, 2012, 4, pp. 47-58.
Musikasang, H., Tani, A., Kittikun, A. H., and Maneerat, S., Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microbiol Biotechnol., 2009, 25, pp. 1337-1345.
Messaoudi, S., Kergourlay, G., Rossero, A., Ferchichi, M., Prévost, H., Drider, D., et al., Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int. Microbiol., 2011, 14, pp. 103-110.
Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S,, et al., Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 2018, 8(1), pp. 10.
Lin. J., Sahin, O., Michel, L. O., Zhang, Q., Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immunity, 2003, 71, pp. 4250–9.
Yaneisy, G. H., Tania, P. S., Ramón, B., José, L., Balcázar, J. R., Nicoli, J. M. S., et al. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Vet. Sci., 2016, 108, pp. 125–132.
Shokryazdan, P., Sie,o C. C., Kalavathy, R., Liang J. B., Alitheen, N. B., Faseleh Jahromi M., et al. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed Res Int. 2, 2014, pp. 1-16.