Identification and Characterization of Bacillus megaterium as Probiotic Bacteria in Poultry Feed

Authors

  • Mihaela Dumitru National Research & Development Institute for Animal Biology and Nutrition (IBNA), Laboratory of Animal Nutrition & Biotechnology, Calea Bucuresti no.1, 077015, Balotesti, Ilfov, Romania.
  • Nicoleta Lefter National Research & Development Institute for Animal Biology and Nutrition (IBNA), Laboratory of Animal Nutrition & Biotechnology, Calea Bucuresti no.1, 077015, Balotesti, Ilfov, Romania.
  • Lavinia Idriceanu National Research & Development Institute for Animal Biology and Nutrition (IBNA), Laboratory of Animal Nutrition & Biotechnology, Calea Bucuresti no.1, 077015, Balotesti, Ilfov, Romania.
  • Georgeta Ciurescu National Research & Development Institute for Animal Biology and Nutrition (IBNA), Laboratory of Animal Nutrition & Biotechnology, Calea Bucuresti no.1, 077015, Balotesti, Ilfov, Romania.
  • Mihaela Habeanu National Research & Development Institute for Animal Biology and Nutrition (IBNA), Laboratory of Animal Nutrition & Biotechnology, Calea Bucuresti no.1, 077015, Balotesti, Ilfov, Romania.

Keywords:

gastrointestinal resistance, in vitro properties, probiotic

Abstract

The present study was planned to identify the Bacillus probiotic characteristics from a strain knows as Bacillus spp. in
with the aim of use as a probiotic candidate in broiler chickens feed. The strain was identified phenotypically and
evaluated for their viability through total plate count method, colony morphology, catalase test, hemolysis activity, pH
(2 and 3) and bile salts (0.3% w/v) tolerance under simulated gastrointestinal tract (GIT) conditions, rate of
survivability (%), spores resistance at high temperature and antibiotics susceptibility tests. Registered under the code
IBNA 66, the strain was identified by API 50CHB (ID 99.9%) and ABIS online (91.8% similarity) as Bacillus
megaterium. The strain presented a viable count of 3 x 1011 CFU/mL after 22±2h of incubation at 37°C, 120 rpm with
positive catalase, and non-hemolytic activity results. Also, Bacillus megaterium showed a significant resistance and
survivability at pH 2 (P <0.0001, 62.09%) and pH 3 (P <0.0001, 77.53%), bile salts (P <0.0001, 84.27%), with a high
ability to produce spores (after 120 min. at 80°C show 9.47 Log CFU/mL, P <0.0001). The antibiotic susceptibility
test showed 100.00% resistance of strain to oxacillin (1 μg/mL), with multiple antibiotic resistance indices above 0.5.
In conclusion, Bacillus megaterium can be an ideal probiotic candidate that can potentially be formulated and applied
in the poultry feed for improving performance and modulated GIT microflora.

References

Vazquez, A. P. Bacillus species are superior

probiotic Feed-Additives for Poultry. Journal of

Bacteriology & Mycology: Open Access, 2016, 2(3).

doi:10.15406/jbmoa.2016.02.00023.

Jadhav, K., Sharma, K. S., Katoch, S., Sharma, V. K.

and Mane, B. G. Probiotics in broiler poultry feeds: A

review. J. Anim. Nutr. Physiol, 2015, 1, pp. 4-16.

Chaucheyras-Durand, F., Durand, H. Probiotics in

animal nutrition and health. Benef Microbes. 2010, 1(1),

pp. 3-9. doi: 10.3920/BM2008.1002. PMID: 21840795.

Ciurescu, C., Dumitru, M., Gheorghe, A., Untea, A.

E. Effect of Bacillus subtilis on growth performance,

bone mineralization, and bacterial population of broilers

fed with different protein sources. Poultry Science,

, 99(11), pp. 5960-5971.

Al-Thubiani, A. S. A., Maher, Y. A., Fathi, A.,

Abourehab, M. A. S., Alarjah, M., Khan, M. S. A., AlGhamdi, S. B. Identification and characterization of a

novel antimicrobial peptide compound produced by

Bacillus megaterium strain isolated from oral

microflora. Saudi Pharmaceutical Journal, 2018, 26(8),

pp. 1089–1097. doi:10.1016/j.jsps.2018.05.019.

Dumitru, G., Ciurescu, G., Sorescu, I. In vitro

evaluation of some probiotic properties of Lactobacillus

strains isolated from chickens’ gut. Scientific Papers:

Animal Science and Biotechnologies, 2020, 53 (1), pp.

-51.

EFSA. Guidance on the assessment of the toxigenic

potential of Bacillus species used in animal nutrition.

EFSA Journal, 2014, 12, 3665.

EFSA. Introduction of a Qualified Presumption of

Safety (QPS) approach for assessment of selected

microorganisms referred to EFSA. EFSA Journal, 2007,

, pp. 1–16.

Ciurescu, C., Dumitru, M., Sorescu, I. Effect of

chickpea and probiotics on broiler chicks’ performance

and gut microflora populations. Scientific Papers:

Animal Science and Biotechnologies, 2020, 53 (2), pp.

-7.

Flores, C. A., T., Duong, N., Augspurger, Lee., J. T.

Efficacy of Bacillus subtilis administered as a direct-fed

microorganism in comparison to an antibiotic growth

promoter and in diets with low and high DDGS inclusion

levels in broiler chickens. J. Appl. Poult. Res., 2019, 28,

pp. 902–911.

Barbosa, T. M., Serra, C. R., La Ragione R. M,

Woodward, M J., Henriques, A. O. Screening for

Bacillusisolates in the broiler gastrointestinal tract. Appl

Environ Microbiol., 2005, 71(2), pp. 968-78. doi:

1128/AEM.71.2.968-978.2005. PMID: 15691955;

PMCID: PMC546680.

Nguyen, A. T. V., Nguyen, D. V., Tran, M. T.,

Nguyen, L. T., Nguyen, A. H., Phan, T. N. Isolation and

characterization of Bacillus subtilis CH16 strain from

chicken gastrointestinal tracts for use as a feed

supplement to promote weight gain in broilers. Letter in

Applied Microbiology, 2015, 60, pp. 580-588.

Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J.

T., William S. T. Bergey's Manual of Determinative

Bacteriology Williams and Walkins, Baltimore, 1994.

Stoica, C., Sorescu, I. ABIS online – Advanced

Bacterial Identification Software, an original tool for

phenotypic bacterial identification. Regnum

Prokaryotae, 2017, www.tgw1916.net.

Dumitru, M., Sorescu, I., Hăbeanu, M., Tabuc, C.,

Idriceanu, L., Jurcoane, Ș. Preliminary characterisation

of Bacillus subtilis strain use as dietary probiotic bioadditive in weaning piglet. J. Food and Feed Research,

, 45 (2), pp. 203-211.

Sorescu, I., Dumitru, M., Ciurescu, G. Lactobacillus

spp. and Enterococcus faecium strains isolation,

identification, preservation and quantitative

determinations from turkey gut content. Rom.

Biotechnol. Lett., 2019, 24(1), pp. 41-49.

Lee, J., Park, I., Choi, Y., Cho, J. Bacillus strain as

feed additive: in vitro evaluation of its potential

probiotic properties. Rev. Colombiana de Ciencias

Pecuarias, 2012, 25, pp. 577‒585.

Dumitru, M., Hăbeanu, M., Tabuc, C., Jurcoane, Ș.

Preliminary characterization of the probiotic properties

of a bacterial strain for used in monogastric nutrition.

Bulletin of the University of Agricultural Sciences and

Veterinary Medicine, Animal Science and

Biotechnologies, 2019, 76(2), pp. 102-108.

Ritter, A. C., Paula, A., Correa, F., Veras, F. F.,

Brandelli, A. Characterization of Bacillus subtilis

available as probiotics. Journal of Microbiology

Research, 2018, 8(2), pp. 23–32. https://

doi.org/10.5923/j.microbiology.20180802.01.

Chaiyawan, N., Taveeteptaikul, P., Wannissorn, B.

Characterization and probiotic properties of Bacillus

strains isolated from broiler. Thai J. Vet. Med., 2010,

(2), pp. 207–214.

Zulkhairi Amin, F. A., Sabri, S., Ismail, M., Chan,

K. W., Ismail, N., Mohd Esa, N., Zawawi, N. Probiotic

properties of Bacillus strains isolated from Stingless Bee

(Heterotrigona itama) Honey collected across Malaysia.

International Journal of Environmental Research and

Public Health, 2019, 17(1), pp. 278.

doi:10.3390/ijerph17010278

Ramlucken, U., Lalloo, R., Roets, Y., Moonsamy,

G., van Rensburg, C. J., Thantsha, M. S. Advantages of

Bacillus-based probiotics in poultry production.

Livestock Science, 2020, 241 (104215), pp. 1-15.

doi:10.1016/j.livsci.2020.104215.

Nemutanzhela, M. E., Roets, Y., Gardiner, N.,

Lalloo, R. The use and benefits of Bacillus based

biological agents in aquaculture. Sustainable

aquaculture techniques. IntechOpen. Rijeka, Croatia,

UK. 33, 2014.

Kavitha, M., Raja, M., Perumal, P. Evaluation of

probiotic potential of Bacillus spp. isolated from the

digestive tract of freshwater fish Labeo calbasu

(Hamilton, 1822). Aquaculture Reports, 11, pp. 59–69.

doi:10.1016/j.aqrep.2018.07.001.

Ramluckena, U., Lallooa, R., Roetsa, Y.,

Moonsamya, G., Jansen van Rensburg, C., Thantsha,

M.S. Advantages of Bacillus-based probiotics in poultry

production. Livestock Science, 2020, 241, pp. 1-15.

https://doi.org/10.1016/j.livsci.2020.104215.

Nithya, V., Halami, P. M. Evaluation of the probiotic

characteristics of Bacillus species isolated from different

food sources. Ann. Microbiol., 2013, 63, pp. 129-137.

Fontana, L., Bermudez-Brito, M., Plaza-Diaz, J.,

Munoz-Quezada, S., Gil, A. Sources, isolation,

characterisation and evaluation of probiotics. British

Journal of nutrition, 2013, 109(S2), pp. S35-S50.

Sharma, K., Sharma, N., Sharma, R. Identification

and evaluation of in vitro probiotic attributes of novel

and potential strains of lactic acid bacteria isolated from

traditional dairy products of north-west himalayas.

Journal of Clinical Microbiology and Biochemical Clin

Microbiol Biochem Technol 2(1), pp. 018-025.

doi:10.17352/jcmbt.000011.

Mingmongkolchai, S., Panbangred, W. In vitro

evaluation of candidate Bacillus spp. for animal feed.

The Journal of General and Applied Microbiology,

, 63(2), pp. 147–156.

doi:10.2323/jgam.2016.09.002.

Setlow, P. Spores of Bacillus subtilis: their resistance

to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 2006, 101(3), pp. 514–525.

doi:10.1111/j.1365-2672.2005.02736.x.

Grant, A., Gay, C. G., Lillehoj, H. S. Bacillus spp. as

direct-fed microbial antibiotic alternatives to enhance

growth, immunity, and gut health in poultry. Avian

Pathology, 2018, 47(4), pp. 339–351.

doi:10.1080/03079457.2018.1464117.

Galarza-Seeber, R., Latorre, J. D., HernandezVelasco, X., Wolfenden, A. D., Bielke, L. R., Menconi,

A., Tellez, G. Isolation, screening and identification of

Bacillus spp. as direct-fed microbial candidates for

aflatoxin B1 biodegradation. Asian Pacific Journal of

Tropical Biomedicine, 2015, 5(9), pp. 702-706.

Dumitru, M, Habeanu, M, Lefter, N. A., Gheorghe,

A. The effect of Bacillus licheniformis as direct-fed

microbial product on growth performance,

gastrointestinal disorders and microflora population in

weaning piglets. Rom Biotechnol Lett. 2020, 25(6), pp.

-2069. doi: 10.25083/rbl/25.6/2060.2069.

Knarreborg, A., Brockmann, E., Høybye, K., Knap,

I., Lund, B., Milora, N., Leser, T.D. Bacillus subtilis

(DSM17299) modulates the ileal microbial communities

and improves growth performance in broilers. Int. J.

Prebiotic Probiotic, (2008), 3, pp. 83-88.

Glasscock, J. M. Evaluation of different probiotic

strains supplemented in commercial broiler rations and

their influences on performance, yield, and intestinal

microbiota. Electronic theses and dissertations, 2017,

https://scholarworks.sfasu.edu/etds/100

Downloads

Published

2023-09-05