Utilization of Transgenic Bombyx mori for Biomaterials Production
Keywords:
Bombyx mori, fibroin, recombinant proteins, transgenic silkwormsAbstract
Bombyx mori is one of the most studied species of Lepidoptera by the scientific community, being a permanent
model organism especially for life sciences. Two major proteins named fibroin and sericin are found in silk thread
used in the cocoon. Fibroin is widely used as a biomaterial due to the high biocompatibility, mechanical strength and
biodegradability. Besides the great economic importance, over the past decade, Bombyx mori has received major
attention as a bioreactor for large scale production of recombinant proteins. One of the greatest advantages of
silkworms is the number of genes which are homologous to human genes, but also it is important to mention their
short generation time and the rich genetic resource. In this article, we summarized a review of using the transgenic
silkworm as a bioreactor to produce recombinant proteins. The recombinant proteins are currently used to optimize
the biomaterials, which have a significant impact for the progress of human and veterinary medicine. For example,
sericin hydrogels, containing human acidic fibroblast growth factor supporting wound healing, have been developed.
Also, to improve cell adhesive properties, silk fibroin/hyaluronic scaffolds for human mesenchymal stem cell culture
have been produced.
References
Fazal, N., and Latief, N., Bombyx mori derived
scaffolds and their use in cartilage regeneration: a
systematic review. Osteoarthr. Cartil. 2018,
doi:10.1016/j.joca.2018.07.009
Johari, N., Moroni, L., and Samadikuchaksaraei, A.,
Tuning the conformation and mechanical properties of
silk fibroin hydrogels. Eur. Polym. J.
, doi:10.1016/j.eurpolymj.2020.109842
Biswal, T., BadJena, S. K., and Pradhan, D.,
Sustainable biomaterials and their applications: A short
review. Mater. Today.
, doi:10.1016/j.matpr.2020.01.437
Patil, P. P., Reagan, M. R., and Bohara, R. A., Silk
fibroin and silk-based biomaterial derivatives for ideal
wound dressings. Int. J. Biol. Macromol. 2020,
doi:10.1016/j.ijbiomac.2020.08.041
Farokhi, M., Mottaghitalab, F., Fatahi, Y., Reza, S.
M., Zarrintaj, P., Kundu, S. C., and Khademhosseini,
A., Silk fibroin scaffolds for common cartilage injuries:
possibilities for future clinical applications. Eur.
Polym. J. 2019, doi:10.1016/j.eurpolymj.2019.03.035
Gil, E.S., Panilaitis, B., Bellas, E., and Kaplan, D.L.,
Functionalized silk biomaterials for wound healing.
Adv. Healthc. Mater. 2013, doi:
1002/adhm.201200192
Li, Z., Ji, S., Wang, Y., Shen, X., and Liang, H., Silk
fibroin-based scaffolds for tissue engineering. Front.
Mater. Sci. 2013, doi.org/10.1007/s11706-013-0214-8
Nakaya, H., Tatematsu, K., Sezutsu, H., Kuwabara,
N., Koibuchi, N., and Takeda, S., Secretory expression
of thyroid hormone receptor using transgenic
silkworms and its DNA binding activity. Protein Expr.
Purif. 2020, doi:10.1016/j.pep.2020.105723
Yanagisawa, S., Zhu, Z., Kobayashi, I., Uchino, K.,
Tamada, Y., Tamura, T., and Asakura, T., Improving
Cell-Adhesive Properties of Recombinant Bombyx mori
Silk by Incorporation of Collagen or Fibronectin
Derived Peptides Produced by Transgenic Silkworms,
Biomacromolecules, 2007, 8(11), 3487–3492
Chen, W., Wang, F., Tian, C., Wang, Y., Xu, S.,
Wang, R., Hou, K., Zhao, P., Yu, L., Lu, Z., and Xia,
Q., Transgenic Silkworm-Based Silk Gland Bioreactor
for Large Scale Production of Bioactive Human
Platelet-Derived Growth Factor (PDGF-BB) in Silk
Cocoons. Int. J. Mol. Sci. 2018,
doi:10.3390/ijms19092533
Tatemastu, K., Sezutsu, H., and Tamura, T.,
Utilization of Transgenic Silkworms for Recombinant
Protein Production. J. Biotechnol. Biomaterial. 2012,
doi:10.4172/2155-952X.S9-004
Meng, X., Zhu, F., and Chen, K., Silkworm: A
Promising Model Organism in Life Science, J. Insect
Sci. 2017, doi:10.1093/jisesa/iex064
Song, J., Zhang, J., and Dai, F., Advantages and
Limitations of Silkworm as an Invertebrate Model in
Aging and Lifespan Research. OAJ Gerontol. &
Geriatric Med. 2018,
doi:10.19080/OAJGGM.2018.04.555641
Xu, H., and O’Brochta, D. A., Advanced
technologies for genetically manipulating the silkworm
Bombyx mori, a model Lepidopteran insect. Proc.
Royal. Soc. B. 2015, doi:10.1098/rspb.2015.0487
Swiech, K., Picanço-Castro, V., and Covas, D. T.,
Human cells: New platform for recombinant
therapeutic protein production, Protein Expression and
Purification, 2012, 84(1), 147–153
Saraswat, M., Musante, L., Ravidá, A., Shortt, B.,
Byrne, B., and Holthofer, H., Preparative Purification
of Recombinant Proteins: Current Status and Future
Trends. BioMed Res. Int. 2013,
doi:10.1155/2013/312709
Palomares, L., Estrada-Mondaca, S., and Ramirez,
O., Production of Recombinant Proteins: Challenges
and Solutions, Methods in molecular biology (Clifton,
N.J.), 2004, 267, 15-52
Xu, S., Wang, F., Wang, Y., Wang, R., Hou, K.,
Tian, C., Ji, Y., Yang, Q., Zhao, P., and Xia, Q., A
silkworm based silk gland bioreactor for highefficiency production of recombinant human lactoferrin
with antibacterial and anti-inflammatory activities. J.
Biol. Eng. 2019, doi:10.1186/s13036-019-0186-z
Wang, Y., Wang, F., Xu, S., Wang, R., Tian, C., Ji,
Y., Yang, Q., Zhao, P., and Xia, Q., Transdermal
peptide conjugated to human connective tissue growth
factor with enhanced cell proliferation and hyaluronic
acid synthesis activities produced by a silkworm silk
gland bioreactor. Appl. Microbiol. Biotechnol. 2020,
doi: 10.1007/s00253-020-10836-0
Teulé, F., Miao, Y.G., Sohn, B.H., Kim, Y.S., Hull,
J.J., Fraser, M.J. Jr., Lewis, R.V., and Jarvis, D.L.,
Silkworms transformed with chimeric silkworm/spider
silk genes spin composite silk fibers with improved
mechanical properties, Proceedings of the National
Academy of Sciences of the United States of America,
, 109, 923–928
Han, J., Zang, Y., Lu, H., Zhu, J., and Qin, J., A
novel recombinant dual human SCF expressed in and
purified from silkworm, Bombyx mori, possesses higher
bioactivity than recombinant monomeric human SCF.
Eur. J. Haematol. 2004, doi: 10.1111/j.1600-
2004.00221
Ogata, M., Nakajima, M., Kato, T., Obara, T., Yagi,
H., Kato, K., Usui, T., and Park, E. Y., Synthesis of
sialoglycopolypeptide for potentially blocking
influenza virus infection using a rat alpha2,6-
sialyltransferase expressed in BmNPV bacmid-injected
silkworm larvae. BMC Biotechnol. 2009,
doi:10.1186/1472-6750-9-54
Kurihara, H., Sezutsu, H., Tamura, T., and Yamada,
K., Production of an active feline interferon in the
cocoon of transgenic silkworms using the fibroin Hchain expression system. Biochem. Biophys. Res.
Commun. 2007, doi: 10.1016/j.bbrc.2007.02.055
Kiyoshi, M., Tatematsu, K.I., Tada, M., Sezutsu,
H., Shibata, H., and Ishii-Watabe, A., Structural insight
and stability of TNFR-Fc fusion protein (Etanercept)
produced by using transgenic silkworms. J. Biochem.
, doi:10.1093/jb/mvaa092
Chen, J., Wu, X.F., and Zhang, Y.Z., Expression,
purification and characterization of human GM-CSF
using silkworm pupae (Bombyx mori) as a bioreactor. J.
Biotechnol. 2006, doi:10.1016/j.jbiotec.2005.11.015
Du, D., Kato, T., Suzuki, F., and Park, E.Y.,
Expression of protein complex comprising the human
prorenin and (pro)renin receptor in silkworm larvae
using Bombyx mori nucleopolyhedrovirus (BmNPV)
bacmids for improving biological function. Mol.
Biotechnol. 2009, doi:10.1007/s12033-009-9183-7
Adachi, T., Wang, X., Murata, T., Obara, M.,
Akutsu, H., Machida, M., Umezawa, A., and Tomita,
M., Production of a non-triple helical collagen α chain
in transgenic silkworms and its evaluation as a gelatin
substitute for cell culture. Biotechnol. Bioeng. 2010,
doi:10.1002/bit.22752
Tomita, M., Munetsuna, H., Sato, T., Adachi, T.,
Hino, R., Hayashi, M., Shimizu, K., Nakamura, N.,
Tamura, T., and Yoshizato, K., Transgenic silkworms
produce recombinant human type III procollagen in
cocoons. Nat. Biotechnol. 2003, doi:10.1038/nbt771
Ogawa, S., Tomita, M., Shimizu, K., and
Yoshizato, K., Generation of a transgenic silkworm that
secretes recombinant proteins in the sericin layer of
cocoon: Production of recombinant human serum
albumin, Journal of Biotechnology, 2007, 128(3), 531–
Hino, R., Tomita, M., and Yoshizato, K., The
generation of germline transgenic silkworms for the
production of biologically active recombinant fusion
proteins of fibroin and human basic fibroblast growth
factor, Biomaterials, 2006, 27(33), 5715–5724.
Maeda, S., Kawai, T., Obinata, M., Fujiwara, H.,
Horiuchi, Y.S., Sato, Y., and Furusawa, M., Production
of human α-interferon in silkworm using a baculovirus
vector. Nature. 1985, doi:10.1038/315592a0
Cao, C., Wu, X., Zhao, N., Yao, H., Lu, X., and
Tan, Y., Development of a rapid and efficient BmNPV
baculovirus expression system for application in
mulberry silkworm, Bombyx mori, Current Science,
, 91(12), 1692-1697
Tamura, T., Thibert, C., Royer, C., Kanda, T.,
Eappen, A., Kamba, M., Kômoto, N., Thomas, J.L.,
Maucham, B., Chavancy, G., Shirk, P., Fraser, M.,
Prudhomme, J.C., and Couble, P., Germline
transformation of the silkworm Bombyx mori L. using
a piggyBac transposon-derived vector. Nat. Biotechnol.
, doi:10.1038/71978
Zhong, B., Li, J., Chen, J., Ye, J., and Yu, S.,
Comparison of Transformation Efficiency of piggyBac
Transposon among Three Different Silkworm Bombyx
mori Strains. Acta Biochim. Biophys. Sin., 2007,
doi:10.1111/j.1745-7270.2007.00252.x
Jiang, L., Sun, Q., Liu, W., Guo, H., Peng, Z.,
Dang, Y., Huang, C., Zhao, P., and Xia, Q.,
Postintegration stability of the silkworm piggyBac
transposon. Insect Biochem. Mol. Biol. 2014,
doi:10.1016/j.ibmb.2014.03.006
Song, Y., Wang, H., Yue, F., Lv, Q., Cai, B., Dong,
N., Wang, Z., and Wang, L., Silk‐Based Biomaterials
for Cardiac Tissue Engineering. Adv. Healthcare
Mater. 2020, doi:10.1002/adhm.202000735
Kearns, V., MacIntosh, A.C., Crawford, A., and
Hatton, P.V., Silk-based Biomaterials for Tissue
Engineering, Topics in Tissue Engineering, 2008, 4, 4-
Huang, W., Ling, S., Li, C., Omenetto, F. G., and
Kaplan, D. L., Silkworm silk-based materials and
devices generated using bio-nanotechnology. Chem.
Soc. Rev. 2018, doi.org/10.1039/c8cs00187a
Meinel, L., Hofmann, S., Karageorgiou, V., KirkerHead, C., McCool, J., Gronowicz, G., Zichnerb, L.,
Langera, R., Vunjak-Novakovica, G., and Kaplan, D.
L., The inflammatory responses to silk films in vitro
and in vivo, Biomaterials, 2005, 26(2), 147–155
Kukla, D.A., Stoppel, W.L., Kaplan, D.
L., and Khetani, S.R., Assessing the compatibility
of primary human hepatocyte culture within porous silk
sponges. RSC Adv. 2020,
doi.org/10.1039/D0RA04954A
Zakeri-Siavashani, A., Chamanara, M.,
Nassireslami, E., Shiri, M., Hoseini-Ahmadabadi, M.,
and Paknejad, B., Three dimensional spongy fibroin
scaffolds containing keratin/vanillin particles as an
antibacterial skin tissue engineering scaffold. Int. J.
Polym. Mater. 2020,
doi:10.1080/00914037.2020.1817021
Shen, Z., Kang, C., Chen, J., Ye, D., Qiu, S., Guo,
S., and Zhu, Y., Surface modification of polyurethane
towards promoting the ex vivo cytocompatibility and in
vivo biocompatibility for hypopharyngeal tissue
engineering. J. Biomater. Appl. 2013, doi:
1177/0885328212468184
Kim, D.W., Lee, O.J., Kim, S.W., Ki, C.S., Chao,
J.R., Yoo, H., Yoon, S.I., Lee, J.E., Park, Y.R., Kweon,
H., Lee, K.G., Kaplan, D.L., and Park, C.H., Novel
fabrication of fluorescent silk utilized in
biotechnological and medical applications.
Biomaterials. 2015, doi:
1016/j.biomaterials.2015.08.025
Leem, J. W., Fraser, M. J., and Kim, Y. L.,
Transgenic and Diet-Enhanced Silk Production for
Reinforced Biomaterials: A Metamaterial Perspective.
Annu. Rev. Biomed. Eng. 2020, doi:10.1146/annurevbioeng-082719-032747
Li, Z., Jiang, Y., Cao, G., Li, J., Xue, R., and Gong,
C., Construction of transgenic silkworm spinning
antibacterial silk with fluorescence. Mol. Biol. Rep.
, doi: 10.1007/s11033-014-3735-z
Saviane, A., Romoli, O., Bozzato, A., Freddi, G.,
Cappelletti, C., Rosini, E., Cappellozza, S., Tettamanti,
G., and Sandrelli, F., Intrinsic antimicrobial properties
of silk spun by genetically modified silkworm strains.
Transgenic Res. 2018, doi: 10.1007/s11248-018-0059-
Zhu, Z., Kikuchi, Y., Kojima, K., Tamura, T.,
Kuwabara, N., Nakamura, T., and Asakura, T.,
Mechanical Properties of Regenerated Bombyx mori
Silk Fibers and Recombinant Silk Fibers Produced by
Transgenic Silkworms. J. Biomater. Sci. Polym. Ed.
, doi:10.1163/156856209x423126
Wen, H., Lan, X., Zhang, Y., Zhao, T., Wang, Y.,
Kajiura, Z., and Nakagaki, M., Transgenic silkworms
(Bombyx mori) produce recombinant spider dragline
silk in cocoons. Mol. Biol. Rep. 2010,
doi:10.1007/s11033-009-9615-2
Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W.,
Hou, K., Tian, C., Wang, F., Yu, L., Lu, Z., Zhao, P.,
Xia, Q., Genetically engineered bi-functional silk
material with improved cell proliferation and antiinflammatory activity for medical application. Acta
Biomater. 2019, doi: 10.1016/j.actbio.2018.12.036
Vepari, C., and Kaplan, D. L., Silk as a
Biomaterial. Prog. Polym. Sci. 2007,
doi.org/10.1016/j.progpolymsci.2007.05.013
Tomeh, M. A., Hadianamrei, R., and Zhao, X., Silk
Fibroin as a Functional Biomaterial for Drug and Gene
Delivery. Pharmaceutics. 2019,
doi:10.3390/pharmaceutics11100494
Chouhan, D., and Mandal, B. B., Silk Biomaterials
in Wound Healing and Skin Regeneration
Therapeutics: from Bench to Bedside. Acta
Biomater. 2019, doi:10.1016/j.actbio.2019.11.050