Utilization of Transgenic Bombyx mori for Biomaterials Production

Authors

  • Gabriela Maria Baci University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Animal Breeding and Biotechnologies, 400372, 3-5 th Calea Manastur Street, Cluj-Napoca, Romania
  • Adela Ramona Moise University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Animal Breeding and Biotechnologies, 400372, 3-5 th Calea Manastur Street, Cluj-Napoca, Romania
  • Daniel Severus Dezmirean University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Animal Breeding and Biotechnologies, 400372, 3-5 th Calea Manastur Street, Cluj-Napoca, Romania

Keywords:

Bombyx mori, fibroin, recombinant proteins, transgenic silkworms

Abstract

Bombyx mori is one of the most studied species of Lepidoptera by the scientific community, being a permanent
model organism especially for life sciences. Two major proteins named fibroin and sericin are found in silk thread
used in the cocoon. Fibroin is widely used as a biomaterial due to the high biocompatibility, mechanical strength and
biodegradability. Besides the great economic importance, over the past decade, Bombyx mori has received major
attention as a bioreactor for large scale production of recombinant proteins. One of the greatest advantages of
silkworms is the number of genes which are homologous to human genes, but also it is important to mention their
short generation time and the rich genetic resource. In this article, we summarized a review of using the transgenic
silkworm as a bioreactor to produce recombinant proteins. The recombinant proteins are currently used to optimize
the biomaterials, which have a significant impact for the progress of human and veterinary medicine. For example,
sericin hydrogels, containing human acidic fibroblast growth factor supporting wound healing, have been developed.
Also, to improve cell adhesive properties, silk fibroin/hyaluronic scaffolds for human mesenchymal stem cell culture
have been produced.

References

Fazal, N., and Latief, N., Bombyx mori derived

scaffolds and their use in cartilage regeneration: a

systematic review. Osteoarthr. Cartil. 2018,

doi:10.1016/j.joca.2018.07.009

Johari, N., Moroni, L., and Samadikuchaksaraei, A.,

Tuning the conformation and mechanical properties of

silk fibroin hydrogels. Eur. Polym. J.

, doi:10.1016/j.eurpolymj.2020.109842

Biswal, T., BadJena, S. K., and Pradhan, D.,

Sustainable biomaterials and their applications: A short

review. Mater. Today.

, doi:10.1016/j.matpr.2020.01.437

Patil, P. P., Reagan, M. R., and Bohara, R. A., Silk

fibroin and silk-based biomaterial derivatives for ideal

wound dressings. Int. J. Biol. Macromol. 2020,

doi:10.1016/j.ijbiomac.2020.08.041

Farokhi, M., Mottaghitalab, F., Fatahi, Y., Reza, S.

M., Zarrintaj, P., Kundu, S. C., and Khademhosseini,

A., Silk fibroin scaffolds for common cartilage injuries:

possibilities for future clinical applications. Eur.

Polym. J. 2019, doi:10.1016/j.eurpolymj.2019.03.035

Gil, E.S., Panilaitis, B., Bellas, E., and Kaplan, D.L.,

Functionalized silk biomaterials for wound healing.

Adv. Healthc. Mater. 2013, doi:

1002/adhm.201200192

Li, Z., Ji, S., Wang, Y., Shen, X., and Liang, H., Silk

fibroin-based scaffolds for tissue engineering. Front.

Mater. Sci. 2013, doi.org/10.1007/s11706-013-0214-8

Nakaya, H., Tatematsu, K., Sezutsu, H., Kuwabara,

N., Koibuchi, N., and Takeda, S., Secretory expression

of thyroid hormone receptor using transgenic

silkworms and its DNA binding activity. Protein Expr.

Purif. 2020, doi:10.1016/j.pep.2020.105723

Yanagisawa, S., Zhu, Z., Kobayashi, I., Uchino, K.,

Tamada, Y., Tamura, T., and Asakura, T., Improving

Cell-Adhesive Properties of Recombinant Bombyx mori

Silk by Incorporation of Collagen or Fibronectin

Derived Peptides Produced by Transgenic Silkworms,

Biomacromolecules, 2007, 8(11), 3487–3492

Chen, W., Wang, F., Tian, C., Wang, Y., Xu, S.,

Wang, R., Hou, K., Zhao, P., Yu, L., Lu, Z., and Xia,

Q., Transgenic Silkworm-Based Silk Gland Bioreactor

for Large Scale Production of Bioactive Human

Platelet-Derived Growth Factor (PDGF-BB) in Silk

Cocoons. Int. J. Mol. Sci. 2018,

doi:10.3390/ijms19092533

Tatemastu, K., Sezutsu, H., and Tamura, T.,

Utilization of Transgenic Silkworms for Recombinant

Protein Production. J. Biotechnol. Biomaterial. 2012,

doi:10.4172/2155-952X.S9-004

Meng, X., Zhu, F., and Chen, K., Silkworm: A

Promising Model Organism in Life Science, J. Insect

Sci. 2017, doi:10.1093/jisesa/iex064

Song, J., Zhang, J., and Dai, F., Advantages and

Limitations of Silkworm as an Invertebrate Model in

Aging and Lifespan Research. OAJ Gerontol. &

Geriatric Med. 2018,

doi:10.19080/OAJGGM.2018.04.555641

Xu, H., and O’Brochta, D. A., Advanced

technologies for genetically manipulating the silkworm

Bombyx mori, a model Lepidopteran insect. Proc.

Royal. Soc. B. 2015, doi:10.1098/rspb.2015.0487

Swiech, K., Picanço-Castro, V., and Covas, D. T.,

Human cells: New platform for recombinant

therapeutic protein production, Protein Expression and

Purification, 2012, 84(1), 147–153

Saraswat, M., Musante, L., Ravidá, A., Shortt, B.,

Byrne, B., and Holthofer, H., Preparative Purification

of Recombinant Proteins: Current Status and Future

Trends. BioMed Res. Int. 2013,

doi:10.1155/2013/312709

Palomares, L., Estrada-Mondaca, S., and Ramirez,

O., Production of Recombinant Proteins: Challenges

and Solutions, Methods in molecular biology (Clifton,

N.J.), 2004, 267, 15-52

Xu, S., Wang, F., Wang, Y., Wang, R., Hou, K.,

Tian, C., Ji, Y., Yang, Q., Zhao, P., and Xia, Q., A

silkworm based silk gland bioreactor for highefficiency production of recombinant human lactoferrin

with antibacterial and anti-inflammatory activities. J.

Biol. Eng. 2019, doi:10.1186/s13036-019-0186-z

Wang, Y., Wang, F., Xu, S., Wang, R., Tian, C., Ji,

Y., Yang, Q., Zhao, P., and Xia, Q., Transdermal

peptide conjugated to human connective tissue growth

factor with enhanced cell proliferation and hyaluronic

acid synthesis activities produced by a silkworm silk

gland bioreactor. Appl. Microbiol. Biotechnol. 2020,

doi: 10.1007/s00253-020-10836-0

Teulé, F., Miao, Y.G., Sohn, B.H., Kim, Y.S., Hull,

J.J., Fraser, M.J. Jr., Lewis, R.V., and Jarvis, D.L.,

Silkworms transformed with chimeric silkworm/spider

silk genes spin composite silk fibers with improved

mechanical properties, Proceedings of the National

Academy of Sciences of the United States of America,

, 109, 923–928

Han, J., Zang, Y., Lu, H., Zhu, J., and Qin, J., A

novel recombinant dual human SCF expressed in and

purified from silkworm, Bombyx mori, possesses higher

bioactivity than recombinant monomeric human SCF.

Eur. J. Haematol. 2004, doi: 10.1111/j.1600-

2004.00221

Ogata, M., Nakajima, M., Kato, T., Obara, T., Yagi,

H., Kato, K., Usui, T., and Park, E. Y., Synthesis of

sialoglycopolypeptide for potentially blocking

influenza virus infection using a rat alpha2,6-

sialyltransferase expressed in BmNPV bacmid-injected

silkworm larvae. BMC Biotechnol. 2009,

doi:10.1186/1472-6750-9-54

Kurihara, H., Sezutsu, H., Tamura, T., and Yamada,

K., Production of an active feline interferon in the

cocoon of transgenic silkworms using the fibroin Hchain expression system. Biochem. Biophys. Res.

Commun. 2007, doi: 10.1016/j.bbrc.2007.02.055

Kiyoshi, M., Tatematsu, K.I., Tada, M., Sezutsu,

H., Shibata, H., and Ishii-Watabe, A., Structural insight

and stability of TNFR-Fc fusion protein (Etanercept)

produced by using transgenic silkworms. J. Biochem.

, doi:10.1093/jb/mvaa092

Chen, J., Wu, X.F., and Zhang, Y.Z., Expression,

purification and characterization of human GM-CSF

using silkworm pupae (Bombyx mori) as a bioreactor. J.

Biotechnol. 2006, doi:10.1016/j.jbiotec.2005.11.015

Du, D., Kato, T., Suzuki, F., and Park, E.Y.,

Expression of protein complex comprising the human

prorenin and (pro)renin receptor in silkworm larvae

using Bombyx mori nucleopolyhedrovirus (BmNPV)

bacmids for improving biological function. Mol.

Biotechnol. 2009, doi:10.1007/s12033-009-9183-7

Adachi, T., Wang, X., Murata, T., Obara, M.,

Akutsu, H., Machida, M., Umezawa, A., and Tomita,

M., Production of a non-triple helical collagen α chain

in transgenic silkworms and its evaluation as a gelatin

substitute for cell culture. Biotechnol. Bioeng. 2010,

doi:10.1002/bit.22752

Tomita, M., Munetsuna, H., Sato, T., Adachi, T.,

Hino, R., Hayashi, M., Shimizu, K., Nakamura, N.,

Tamura, T., and Yoshizato, K., Transgenic silkworms

produce recombinant human type III procollagen in

cocoons. Nat. Biotechnol. 2003, doi:10.1038/nbt771

Ogawa, S., Tomita, M., Shimizu, K., and

Yoshizato, K., Generation of a transgenic silkworm that

secretes recombinant proteins in the sericin layer of

cocoon: Production of recombinant human serum

albumin, Journal of Biotechnology, 2007, 128(3), 531–

Hino, R., Tomita, M., and Yoshizato, K., The

generation of germline transgenic silkworms for the

production of biologically active recombinant fusion

proteins of fibroin and human basic fibroblast growth

factor, Biomaterials, 2006, 27(33), 5715–5724.

Maeda, S., Kawai, T., Obinata, M., Fujiwara, H.,

Horiuchi, Y.S., Sato, Y., and Furusawa, M., Production

of human α-interferon in silkworm using a baculovirus

vector. Nature. 1985, doi:10.1038/315592a0

Cao, C., Wu, X., Zhao, N., Yao, H., Lu, X., and

Tan, Y., Development of a rapid and efficient BmNPV

baculovirus expression system for application in

mulberry silkworm, Bombyx mori, Current Science,

, 91(12), 1692-1697

Tamura, T., Thibert, C., Royer, C., Kanda, T.,

Eappen, A., Kamba, M., Kômoto, N., Thomas, J.L.,

Maucham, B., Chavancy, G., Shirk, P., Fraser, M.,

Prudhomme, J.C., and Couble, P., Germline

transformation of the silkworm Bombyx mori L. using

a piggyBac transposon-derived vector. Nat. Biotechnol.

, doi:10.1038/71978

Zhong, B., Li, J., Chen, J., Ye, J., and Yu, S.,

Comparison of Transformation Efficiency of piggyBac

Transposon among Three Different Silkworm Bombyx

mori Strains. Acta Biochim. Biophys. Sin., 2007,

doi:10.1111/j.1745-7270.2007.00252.x

Jiang, L., Sun, Q., Liu, W., Guo, H., Peng, Z.,

Dang, Y., Huang, C., Zhao, P., and Xia, Q.,

Postintegration stability of the silkworm piggyBac

transposon. Insect Biochem. Mol. Biol. 2014,

doi:10.1016/j.ibmb.2014.03.006

Song, Y., Wang, H., Yue, F., Lv, Q., Cai, B., Dong,

N., Wang, Z., and Wang, L., Silk‐Based Biomaterials

for Cardiac Tissue Engineering. Adv. Healthcare

Mater. 2020, doi:10.1002/adhm.202000735

Kearns, V., MacIntosh, A.C., Crawford, A., and

Hatton, P.V., Silk-based Biomaterials for Tissue

Engineering, Topics in Tissue Engineering, 2008, 4, 4-

Huang, W., Ling, S., Li, C., Omenetto, F. G., and

Kaplan, D. L., Silkworm silk-based materials and

devices generated using bio-nanotechnology. Chem.

Soc. Rev. 2018, doi.org/10.1039/c8cs00187a

Meinel, L., Hofmann, S., Karageorgiou, V., KirkerHead, C., McCool, J., Gronowicz, G., Zichnerb, L.,

Langera, R., Vunjak-Novakovica, G., and Kaplan, D.

L., The inflammatory responses to silk films in vitro

and in vivo, Biomaterials, 2005, 26(2), 147–155

Kukla, D.A., Stoppel, W.L., Kaplan, D.

L., and Khetani, S.R., Assessing the compatibility

of primary human hepatocyte culture within porous silk

sponges. RSC Adv. 2020,

doi.org/10.1039/D0RA04954A

Zakeri-Siavashani, A., Chamanara, M.,

Nassireslami, E., Shiri, M., Hoseini-Ahmadabadi, M.,

and Paknejad, B., Three dimensional spongy fibroin

scaffolds containing keratin/vanillin particles as an

antibacterial skin tissue engineering scaffold. Int. J.

Polym. Mater. 2020,

doi:10.1080/00914037.2020.1817021

Shen, Z., Kang, C., Chen, J., Ye, D., Qiu, S., Guo,

S., and Zhu, Y., Surface modification of polyurethane

towards promoting the ex vivo cytocompatibility and in

vivo biocompatibility for hypopharyngeal tissue

engineering. J. Biomater. Appl. 2013, doi:

1177/0885328212468184

Kim, D.W., Lee, O.J., Kim, S.W., Ki, C.S., Chao,

J.R., Yoo, H., Yoon, S.I., Lee, J.E., Park, Y.R., Kweon,

H., Lee, K.G., Kaplan, D.L., and Park, C.H., Novel

fabrication of fluorescent silk utilized in

biotechnological and medical applications.

Biomaterials. 2015, doi:

1016/j.biomaterials.2015.08.025

Leem, J. W., Fraser, M. J., and Kim, Y. L.,

Transgenic and Diet-Enhanced Silk Production for

Reinforced Biomaterials: A Metamaterial Perspective.

Annu. Rev. Biomed. Eng. 2020, doi:10.1146/annurevbioeng-082719-032747

Li, Z., Jiang, Y., Cao, G., Li, J., Xue, R., and Gong,

C., Construction of transgenic silkworm spinning

antibacterial silk with fluorescence. Mol. Biol. Rep.

, doi: 10.1007/s11033-014-3735-z

Saviane, A., Romoli, O., Bozzato, A., Freddi, G.,

Cappelletti, C., Rosini, E., Cappellozza, S., Tettamanti,

G., and Sandrelli, F., Intrinsic antimicrobial properties

of silk spun by genetically modified silkworm strains.

Transgenic Res. 2018, doi: 10.1007/s11248-018-0059-

Zhu, Z., Kikuchi, Y., Kojima, K., Tamura, T.,

Kuwabara, N., Nakamura, T., and Asakura, T.,

Mechanical Properties of Regenerated Bombyx mori

Silk Fibers and Recombinant Silk Fibers Produced by

Transgenic Silkworms. J. Biomater. Sci. Polym. Ed.

, doi:10.1163/156856209x423126

Wen, H., Lan, X., Zhang, Y., Zhao, T., Wang, Y.,

Kajiura, Z., and Nakagaki, M., Transgenic silkworms

(Bombyx mori) produce recombinant spider dragline

silk in cocoons. Mol. Biol. Rep. 2010,

doi:10.1007/s11033-009-9615-2

Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W.,

Hou, K., Tian, C., Wang, F., Yu, L., Lu, Z., Zhao, P.,

Xia, Q., Genetically engineered bi-functional silk

material with improved cell proliferation and antiinflammatory activity for medical application. Acta

Biomater. 2019, doi: 10.1016/j.actbio.2018.12.036

Vepari, C., and Kaplan, D. L., Silk as a

Biomaterial. Prog. Polym. Sci. 2007,

doi.org/10.1016/j.progpolymsci.2007.05.013

Tomeh, M. A., Hadianamrei, R., and Zhao, X., Silk

Fibroin as a Functional Biomaterial for Drug and Gene

Delivery. Pharmaceutics. 2019,

doi:10.3390/pharmaceutics11100494

Chouhan, D., and Mandal, B. B., Silk Biomaterials

in Wound Healing and Skin Regeneration

Therapeutics: from Bench to Bedside. Acta

Biomater. 2019, doi:10.1016/j.actbio.2019.11.050

Downloads

Published

2023-09-05