Garlic, Cilantro and Chlorella’s Effect on Kidney Histoarchitecture Changes in Cd-intoxicated Prussian carp (Carassius gibelio)
Keywords:
cadmium toxicity, fish, kidney histopathology, lyophilization, natural chelatorsAbstract
Natural chelators from some natural sources have been shown their detox heavy metals ability in human and animals. So the present study was carried out to histological compare the aspect of kidney tissue of Prussian carp’s specimens, subjected to chronic Cd intoxication with and without garlic, cilantro and chlorella dietary supplementation.
150 Prussian carps, with weight of 10-12 g were divided according to the following treatments for 21 days: C (without treatment), E1 (10 ppm Cd into water as CdCl2 x ½ H2O), E2 (10 ppm Cd into water+2% lyophilized garlic in feed), E3 (10 ppm Cd into water+2% lyophilized cilantro in feed), E4 (10 ppm Cd into water+2% lyophilized chlorella in feed).
The potential protective effect of the three lyophilized products against the impact of cadmium toxicity was evaluated in terms of hystopathological characteristics. For this purpose, fragments of kidney were removed and routinely processed at the end of experimental period and analyzed in light microscopy. A specific QuickPHOTO Micro 2.2 software has been used for the histological study.
Tissue alterations were assessed using the histopathological score ranging from - to +++ depending on the degree and extend of lesions: (-) none, (+) mild occurrence, (++) moderate occurrence, (+++) severe occurrence.
Cd contamination has definitely affected the kidney, inducing severe damage in its structure as: swelling and hypertrophy of tubules with nuclear deterioration, pyknosis and cariorrexis, nucleus and cytoplasm degeneration, capillary ectasia and congestions.
Active compounds from garlic and cilantro powder have shown the most chelating and antioxidant potential, leading to the evident recovery of kidney architecture, while the response at chlorella treatment was less effective than E2 group and without significant difference compared with E3 group.
References
Solenkova, N. V., Newman, J. D., Berger, J. S., Thurston, G., Hochman, J. S. and Lamas G. A., Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure, American Health Journal, 2014, 168(6), 812–822.
Jarup, L., Berglund, M. and Elinder, C. G., Health effects of cadmium exposure-a review of the literature and a risk estimate, Scand. J. Work Environ. Health., 1998, 24, 1–51.
Swaran, J. S., F., and Pachauri, V., Chelation in Metal Intoxication, Int J Environ Res Public Health, 2010, 7(7), 2745–2788.
Nicula, M., Gergen, I., Harmanescu, M., Banatean-Dunea, I., Marcu, A., Simiz, E., Polen, T. and Lunca, M., Assessing the Impact of EDTA Chelating Effect on some Macro- and Microminerals in Prussian Carp (Carassius Gibelio), Scientific Papers: Animal Science and Biotechnologies, 2011, 44(2), 40-44.
Wilson, L., Chelation Therapy, 2015, http://www.drlwilson.com/articles/chelation.htm
Bilal, A. and Kour, P., Amalgamated effect of garlic extract and cadmium chloride on the histoarchitecture liver of a freshwater catfish, Clarias batrachus, Current Biotica, 2011, 5(2), 244–249.
Almaguer, C. V., Garza-González, M. T., la Rosa, J. R. and Loredo-Medrano, J. A., Biosorption of Pb2+ and Cd2+ in a fixed bed column with immobilized Chorella sp. Biomass, Water Sci. Technol., 2008, 58(5), 1061–9
Uchikawa, T., Yasutake, A., Kumamoto, Y., Maruyama, I., Kumamoto, S, and Ando, Y, The influence of Parachlorella beyerinckii CK-5 on the absorption and excretion of methylmercury (MeHg) in mice, J Toxicol Sci., 2010, 35(1), 101–5.
Shim, J. A., Son, Y. A., Park, J. M. and Kim, M. K., Effect of Chlorella intake on Cadmium metabolism in rats, Nutr Res Pract., 2009, 3(1), 15–22.
Shim, J. Y, Shin, H. S, Han, J. G, Park, H. S, Lim, B. L, Chung, K. W. and Om, A. S., Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats, J Med Food, 2008, 11(3), 479-85.
Queiroz, M. L. S., da Rocha, M. C. and Torello, C. O., Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice, Food Chem Toxicol., 2011, 49(11), 2934–41.
Amin, A., Hamza, A. A., Daoud, S. and Hamza, W., Spirulina protects against cadmium-induced hepatotoxicity in rats, Am. J. Pharmacol. Toxicol., 2006, 1, 21–25.
Shim, J. Y. and Om, A. S., Chlorella vulgaris has preventive effect on cadmium induced liver damage in rats, Mol. Cell. Toxicol., 2008, 4, 138–143.
Shim, J. Y., Shin, H. S., Han, J. G., Park, H. S., Lim B. L., Chung, K. W. and Om, A. S., Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats, J. Med. Food., 2008, 11, 479–485.
Metwally, M. A. A., Effects of Garlic (Allium sativum) on Some Antioxidant Activities in Tilapia Nilotica (Oreochromis niloticus), World Journal of Fish and Marine Sciences, 20091 (1), 56-64.
Gupta, V. K., Singh, S., Agrawal, A., Siddiqi, N. J. and Sharma, B., Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals, Biochemistry Research International, 2015, Article ID 534769.
Pandey Govind, A review of fish model in experimental pharmacology, IRJP, 2011, 2 (9), 33-36.
Oliveira Ribeiro C. A, Filipack, N. F, Mela, M., Silva, P. H, Randi, M. A. F, Costa, J. and Pelletier, E., Histopathological finding in neotropical fish Hopliasmalabricus exposed to subchronic and dietary doses of methylmercury, inorganic lead and tributyltin, Environmental Research, 2006, 101(1), 74-80.
Alaa, G. M. O., Abd-El–Baset M., Abd El Reheem, Khalid Y. AbuelFadl, Ali G., GadEl-Rab, Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes, Natural Science, 2010, 2(11), 1302-1311.
Liebel, S., Tomotake, M. E. M and Oliveira R. C. A., Fish histopathology as biomarker to evaluate water quality, Ecotoxicol. Environ. Contam., 2013, 8(2), 9-15.
Reddy, P. B. and Rawat, S. S., Assessment of Aquatic Pollution Using Histopathology in Fish as a Protocol, Int. Res. J. Environment Sci., 2013, 2(8), 79-82.
Kumar, P. and Singh, A., Cadmium toxicity in fish: An overview, GERF Bulletin of Biosciences, 2010, 1(1), 41-47.
Wong, C. K., Wong, M. H., Morphological and biochemical changes in the gills of Tilapia (Oreochromis mossambicus) to ambient cadmium Exposure, Aquatic Toxicolology, 2000, 48(4), 517-527.
Shukla, S. and Gautam, R. K., Histopathological changes in the kidney of Clarias batrachus exposed to nuvan, Flora and Fauna, 2004, 10(1), 39-40.
Veena, B., Radhakrishnan, C. K. and Chacko, J., Heavy metal induced biochemical effects in an estuarine teleost, Indian J. Marine Sci., 1997, 26, 74-78.
Oprea, L. and Georgescu R., Nutritia si alimentatia pestilor, Ed. Colectia Fundatiei Universitare Dunarea de Jos, Galati, 2002.
Animal Care and Use Procedure (ACUP) 306, Fish and Amphibian Euthanasia, www.research.cornell.edu/care/documents/ACUPs/ACUP306.pdf.
Bancroft, J. D. and Stevens, A., Theory and Practice of Histological Techniques, 4nd ed. Edinburgh: Churchill Livingstone, 1996, pp. 766.
Gibson-Corley, K. N., Olivier, A. K. and Meyerhol D. K., Principles for Valid Histopathologic Scoring in Research, Veterinary Pathology, 2013, 1-9.
Zeinab A. El-Greisy and Abdel Hakim A. El-Gamal, Experimental studies on the effect of cadmium chloride, zinc acetate, their mixture and the mitigation with vitamin C supplementation on hatchability, size and quality of newly hatched larvae of common carp, Cyprinus carpio, The Egyptian Journal of Aquatic Research, 2015, 41(2), 219–226.
Imam, A. A. M., Usama, M. M., Ekbal, T. W, and Mervat, N., Effects of Cadmium on Some Histopathological and Histochemical Characteristics of the Kidney and Gills Tissues of Oreochromis niloticus (Linnaeus, 1758) Dietary Supplemented with Tomato Paste and Vitamin E, Journal of Fisheries and Aquatic Science, 2013, 8, 553-580.
Hussein A. Kaoud, Sayed N. Abou Elgheit, Ahmed R. Eldahshan, Sherein Saeid, The Bioremediation potential of Spirulina platensis and Lemna gibba L in Grass Carp, Ctenopharyngodon idella Exposed to Cadmium Toxicity, The Journal of Veterinary Science. Photon, 2013, 114, 218-226.
Bhuyan, G., Anandhan, R. and Kavitha, V., Qualitative and quantitative analysis of fish tissue of Oreochromis mossambicus collected from Kedilam River, Cuddalore, Tamilnadu, India, Int J Appl Sci Biotechnol, 2014, 2(2), 135-141.
Asia Al-Mansoori, Balqis Al-Ali and Hussain Abed Saoud, Effect of cadmium and lead exposure and recovery on kidney of fishes juveniles Carassius carassius (L.), Journal of Thi-Qar University Special number, 2010, 5, 40-50.
Nicula, M., Dumitrescu G., Petculescu–Ciochină L., Bănăţean-Dunea I., Moţ M., Tăpălagă I., Lunca, M., Boca, L., Pathological tissue lesions induced by chronic cadmium intoxication in silver crucian carp Carassius auratus gibelio, Scientific Papers: Animal Science and Biotechnologies, 2009, 42 (2), 84-90.
Samson Eneojo Abalaka, Heavy metals bioaccumulation and histopathological changes in Auchenoglanis occidentalis fish from Tiga dam, Nigeria, Journal of Environmental Health Science & Engineering (2015), 13, 67, DOI 10.1186/s40201-015-0222-y.
Hussien, A. M. O. and Asmaa, M. H., Removal of cadmium from freshwater cultured Nile tilapia (Oreochromis niloticususing) Neem Leave Water Extract (NLWE) and Neem Leave Powder (NLP), Nature and Science, 2013, 11(12), 12-20.
Jalaludeen, M. D., Arunachalam, M., Raja, M., Nandagopal, S., Showket A. B., Sundar, S. and Palanimuthu, D., Histopathology of the gill, liver and kidney tissues of the freshwater fish Tilapia mossambicus exposed to cadmium sulphate, J.A.B.R., 2012, 2(4), 572-578.
Bilal A., Qureshi, T. A, Manohar, S., Pinky Kaur , Rumysa Khaliq, Effect of Cadmium Chloride on the Histoarchitecture of Liver and Kidney of a freshwater Catfish, Clarias batrachus, International Journal of Environmental Sciences, 2011, 2(2), 543-548.
Nuntiya Pantung, Kerstin G. Helander, Herbert F. Helander and Voravit Cheevaporn, Histopathological Alterations of Hybrid Walking Catfish (Clarias macrocephalus x Clarias gariepinus) in Acute and Subacute Cadmium Exposure, Environment. Asia, 2008, 1, 22-27.
Chutima Thanomsit, Tiantip Boonchuay, Phochit Nanthanawat and Praparsiri Kanchanopas-Barnette, Histological alterations of asian sea bass (Lates calcarifer, Bloch) during sublethal cadmium exposure, Journal of Science, Technology, and Humanities, 2013, 11(1), 1-12.
Ahmet Topal, Gonca Alak, Muhammed Atamanalp, Ertan Oruç, Saltuk Buğrahan Ceyhun, Arzu Uçar, Harun Arslan, Fikret Çelebi, Yavuz Selim Sağlam, Effects of Humic Acid on Liver and Kidney Toxicity Induced by Cadmium in Brown Trout (Salmo trutta fario, L), Turkish Journal of Fisheries and Aquatic Sciences, 2013, 13, 621627.
Annabi, A., Messaoudi, I., Kerkeni, A. and Said, K. H.., Cadmium Accumulation and Histological Lesion in Mosquitofish (Gambusia affinis) tissues Following Acute and Chronic Exposure, Int. J. Environ. Res., 2011, 5(3), 745-756.
Authman, M. M. N., Zaki, M. S, Khallaf, E. A and Abbas, H. H, Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution, Journal of Aquaculture Research & Development, 2015, 6(4), http://dx.doi.org/10.4172/2155-9546.1000328.
Kaoud, H. A., Zaki, M. M., El-Dahshan A. R., Saeidand, S. and El Zorba H. Y, Amelioration the Toxic Effects of Cadmium- Exposure in Nile Tilapia (Oreochromis niloticus) by using Lemna gibba L, Life Science Journal, 2011, 8(1), 185-19.
Zaki, M. S., Mostafa S. O., Fawzi, O. M., Khafagy, M. and Bayumi, F. S., Clinicopathological, Biochemical and Microbiological Change on Grey Mullet Exposed to Cadmium Chloride, American-Eurasian J. Agric. & Environ. Sci., 2009, 5(1), 20-23.
Hadiand A. A. and Alwan S. F., Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminum, International Journal of Pharmacy & Life Sciences, 20-12, 3(11), 2071-2081.
A. A. Hadi and Alwan, S. F., Hadi, A. A. and Alwachi S. N., Effect of aluminum chloride on mice spermatogenesis, Iraqi Journal of Sciences, 1995, 36(1), 1-12.
Weber, L. P., Higgins, P. S., Carlson, R. I. and Janz, D. M., Development and validation of methods for measuring multiple biochemical indices of condition in juvenile fishes, Journal of Fish Biology, 2003, 63, 637-658.
Witeska, M., Stress in fish: hematological and immunological effects of heavy metal, Electronic Journal of Ichthyology, 2015, 1, 35-41.
M. El-Said EL-Boshy, H. A. Gadalla, F. M. A. EL-Hamied, Immunological, hematological and biochemical changes induced by short term exposure to cadmium in catfish (Clarias gariepinus) Journal of Coastal Life Medicine, 2013, 2(3), 175-180.
Saxena M., Saxena H., Histopathological Changes In Lymphoid Organs Of Fish After Exposure To Water Polluted With Heavy Metals, The Internet Journal of Veterinary Medicine, 2007, 5(1).
Ghoshal, K. and Jacob, S. T., Regulation of metallothionein gene expression, Prog Nucleic Acid Res Mol Biol., 2001, 66, 357-84.
Mercola, J. and Dietrich Klinghardt, D. O., Mercury Toxicity and Systemic Elimination Agents, Journal of Nutritional & Environmental Medicine (2001) 11, 53-62.
Patrick, L., Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity, Altern Med Rev., 2003, 8(2), 106–128.
Bilal A. and Kour P., Amalgamated effect of garlic extract and cadmium chloride on the histoarchitecture liver of a freshwater catfish, Clarias batrachus, Current Biotica, 5(2), 244–249.
Metwally, M. A. A., Effects of Garlic (Allium sativum) on Some Antioxidant Activities in Tilapia Nilotica (Oreochromis niloticus), World Journal of Fish and Marine Sciences, 2009, 1(1), 56-64.
Wangensteen H., Samuelsen, A. B., Karl Egil Malterud, K. E., Antioxidant activity in extracts from coriander. Food Chem., 2004; 88, 293-297.
Spisni, E., Tugnoli, M., Ponticelli, A., Mordenti T., Tomasi, V., Hepatic steatosis in artificially fed marine teleosts, J Fish Dis., 1998, 21(3), 177-84.
Chinchore, S. G. and Mahajan, P. R., Protective role of coriandrum sativum (coriander) extract on lead induced alterations in the oxygen consumption of fresh water gastropod snail, Bellamya Bengalensis (Lamarck), Int J Pharm Sci Res., 2013, 4(7), 2789-2793.
Shim, J. Y., Shin, H. S, Han, J. G., Park, H. S, Lim, B. L, Chung, K.W and Om, A. S., Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats, J Med Food., 2008, 11(3), 479-85.
Shim, J. A., Son, Y. A., Park, J. M., and Kim, M. K., Effect of Chlorella intake on Cadmium metabolism in rats, Nutr Res Pract., 2009, 3(1),15–22.
Kim, Y. J., Kwon, S. K. and Kim, M., Effect of Chlorella vulgaris intake on cadmium detoxification in rats fed cadmium, Nutr Res Pract., 2009, 3(2), 89–94.
Yun H., Kim I., Kwon S., Kang J. and Om A., Protective effects of Chlorella Vulgaris against Lead-induced oxidative stress in rat brains, J. Health Sci., 2011, 57, 245–254.
Atkinson, A. W. jr., Gunning, B. E. and John, P. C., Saporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of (14)C-acetate, studied in synchronous cultures, Planta, 1972, 107(1), 1-32, doi: 10.1007/BF00398011.
