Bigger is Better? A Review on the Relationship Between Body Size and Crop Pest Predator Efficiency
Keywords:
arthropods, body size, functional traits, pest predators, predatory efficiencyAbstract
Body size represents a key morphological trait that indicates how biotic communities respond to environmental changes and shape ecosystems processes. In agriculture, many carnivorous arthropods, such as arachnids and beetles, represent valued crop pest predators that are used as a sustainable alternative to pesticide use. The scope of this review is to highlight how the body size of arthropod pest predators is influenced by various agricultural practices and, conversely, how it influences the predation efficiency of these organisms and their overall capacity to provide the ecological service they are valued for. We synthesize existing knowledge on the topic and discuss the ways through which body size shapes the resistance, behaviours and hunting efficiency of pest predators. We emphasis the advantages that larger body size offers, such as, increased prey consumption, feeding range and fecundity, while also accounting for potential disadvantages such as reductions of desiccation resistance, predator evasion capacity and the increased risk of toxic compound bioaccumulation. To conclude, we highlight knowledge gaps and propose future research directions which may serve to further enhance and popularize the use of natural pest predators as one of the means towards efficient ecosystem management and sustainable agriculture.
References
Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth Around the World. China CDC Wkly 2021, 3, 604–613, doi:10.46234/ccdcw2021.160.
Berry, E. M., Dernini, S., Burlingame, B., Meybeck, A., & Conforti, P. (2015). Food security and sustainability: can one exist without the other?. Public health nutrition, 18(13), 2293-2302.
Wagner, W. C. (1999). Sustainable agriculture: how to sustain a production system in a changing environment. International Journal for Parasitology, 29(1), 1-5.
Alexandridis, N., Marion, G., Chaplin-Kramer, R., Dainese, M., Ekroos, J., Grab, H., & Clough, Y. (2021). Models of natural pest control: Towards 134 predictions across agricultural landscapes. Biological control, 163, 104761.
Lonsdorf, E., Kremen, C., Ricketts, T., Winfree, R., Williams, N., & Greenleaf, S. (2009). Modelling pollination services across agricultural landscapes. Annals of botany, 103(9), 1589.
Holland, J. M. (2002). Carabid beetles: their ecology, survival and use in agroecosystems. The agroecology of carabid beetles, 62, 1-40.
Riechert, S. E. (1999). The hows and whys of successful pest suppression by spiders: insights from case studies. Journal of Arachnology, 387-396.
Nelson, G. C., Bennett, E., Berhe, A. A., Cassman, K., DeFries, R., Dietz, T., & Zurek, M. (2006). Anthropogenic drivers of ecosystem change: an overview. Ecology and Society, 11(2).
Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., ... & Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science, 364(6437), 1–10.
Kleijn, D., Bommarco, R., Fijen, T. P. M., Garibaldi, L. A., Potts, S. G., & van der Putten, W. H. (2019). Ecological intensification: Bridging the gap between science and practice. Trends in Ecology & Evolution, 34(2), 154–166. https://doi.org/10.1016/j.tree.2018.11.002.
de la Riva, E.G., Ulrich, W., Batáry, P., Baudry, J., Beaumelle, L., Bucher, R., Čerevková, A., Felipe-Lucia, M.R., Gallé, R., Kesse-Guyot, E., Rembiałkowska, E., Rusch, A., Seufert, V., Stanley, D., & Birkhofer, K. (2023). From functional diversity to human well-being: A conceptual framework for agroecosystem sustainability. Agricultural Systems, 208, 103659. https://doi.org/10.1016/j.agsy.2023.103659.
Moretti, M., Dias, A. T., De Bello, F., Altermatt, F., Chown, S. L., Azcárate, F. M., ... & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31(3), 558-567.
Birkhofer, K., et al. (2017). Functional traits—A bridge between ecology and pest management. Basic and Applied Ecology, 18, 1–9. https://doi.org/10.1016/j.baae.2016.11.002.
Wong, M. K., Guénard, B., & Lewis, O. T. (2019). Trait‐based ecology of terrestrial arthropods. Biological Reviews, 94(3), 999-1022.
Rusch, A., Birkhofer, K., Bommarco, R., Smith, H. G., & Ekbom, B. (2015). Biological control in agricultural landscapes: Effect of farming system, landscape complexity and semi-natural habitats on pests and natural enemies. Agriculture, Ecosystems & Environment, 199, 1–7. https://doi.org/10.1016/j.agee.2014.07.005.
Benoit, J. B., McCluney, K. E., DeGennaro, M. J., & Dow, J. A. (2023). Dehydration dynamics in terrestrial arthropods: from water sensing to trophic interactions. Annual Review of Entomology, 68(1), 129-149.
Schellhorn, N. A., Bianchi, F. J. J. A., & Hsu, C. L. (2014). Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annual review of entomology, 59(1), 559-581.
Jonsson, M., Kaartinen, R., Straub, C. S., Moore, J. W., & Veen, F. J. F. van. (2017). Size, foraging behavior, and food web structure: Insights from a meta-analysis. Advances in Ecological Research, 56, 1–45. https://doi.org/10.1016/bs.aecr.2016.10.001.
Goff, M. L., & Lord, W. D. (2001). Entomotoxicology: Insects as toxicological indicators and the impact of drugs and toxins on insect development. Forensic Entomology, The Utility of Arthropods in Legal Investigations, Byrd, JH and JL Castner (Eds.). New York, USA.
Magura, T., & Lövei, G. L. (2021). Shifting average body size during regeneration after pollution – A case study using ground beetle assemblages. Science of the Total Environment, 756,143991. https://doi.org/10.1016/j.scitotenv.2020.143991.
Feng, L., Arvidsson, F., Smith, H. G., & Birkhofer, K. (2021). Fallows and permanent grasslands conserve the species composition and functional diversity of carabid beetles and linyphiid spiders in agricultural landscapes. Insect Conservation and Diversity, 14(6), 825-836.
Geldenhuys, M., Gaigher, R., Pryke, J. S., & Samways, M. J. (2022). Vineyards compared to natural vegetation maintain high arthropod species turnover but alter trait diversity and composition of assemblages. Agriculture, Ecosystems & Environment, 336, 108043.
Plath, E., Rischen, T., Mohr, T., & Fischer, K. (2021). Biodiversity in agricultural landscapes: Grassy field margins and semi-natural fragments both foster spider diversity and body size. Agriculture, Ecosystems & Environment, 316, 107457.
Zhang, X., Axmacher, J. C., Wu, P., Song, X., Yu, Z., & Liu, Y. (2020). The taxon‐and functional trait‐dependent effects of field margin and landscape composition on predatory arthropods in wheat fields of the North China Plain. Insect Conservation and Diversity, 13(4), 328-339.
Neame, T., & Galpern, P. (2025). Body size mediates ground beetle dispersal from non-crop vegetation: Implications for conservation biocontrol. Agriculture, Ecosystems & Environment, 377, 109270.
Triquet, C., Roume, A., Wezel, A., Tolon, V., & Ferrer, A. (2023). In‐field cover crop strips support carabid communities and shape the ecological trait repartition in maize fields. Agricultural and Forest Entomology, 25(1), 152-163.
Maas, B., Brandl, M., Hussain, R. I., Frank, T., Zulka, K. P., Rabl, D., ... & Moser, D. (2021). Functional traits driving pollinator and predator responses to newly established grassland strips in agricultural landscapes. Journal of Applied Ecology, 58(8), 1728-1737.
Sáenz-Romo, M. G., Veas-Bernal, A., Martínez-García, H., Ibáñez-Pascual, S., Martínez-Villar, E., Campos-Herrera, R., ... & Pérez-Moreno, I. (2019). Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects, 10(12), 421.
Gayer, C., Lövei, G. L., Magura, T., Dieterich, M., & Batáry, P. (2019). Carabid functional diversity is enhanced by conventional flowering fields, organic winter cereals and edge habitats. Agriculture, Ecosystems & Environment, 284, 106579.
Michalko, R., & Košulič, O. (2020). The management type used in plum orchards alters the functional community structure of arthropod predators. International journal of pest management, 66(2), 173-181.
Rosas-Ramos, N., Baños-Picón, L., Tobajas, E., de Paz, V., Tormos, J., & Asís, J. D. (2018). Value of ecological infrastructure diversity in the maintenance of spider assemblages: A case study of Mediterranean vineyard agroecosystems. Agriculture, Ecosystems & Environment, 265, 244-253.
Zhang, X., Zhao, G., Zhang, X., Li, X., Yu, Z., Liu, Y., & Liang, H. (2017). Ground beetle (Coleoptera: Carabidae) diversity and body-size variation in four land use types in a mountainous area near Beijing, China. The Coleopterists Bulletin, 71(2), 402-412.
Cole, L. J., Brocklehurst, S., Elston, D. A., & McCracken, D. I. (2012). Riparian field margins: can they enhance the functional structure of ground beetle (Coleoptera: Carabidae) assemblages in intensively managed grassland landscapes?. Journal of Applied Ecology, 49(6), 1384-1395.
Frank, T., Aeschbacher, S., Barone, M., Künzle, I., Lethmayer, C., & Mosimann, C. (2009, December). Beneficial arthropods respond differentially to wildflower areas of different age. In Annales Zoologici Fennici (Vol. 46, No. 6, pp. 465-480). Finnish Zoological and Botanical Publishing Board.
Gallé, R., Happe, A. K., Baillod, A. B., Tscharntke, T., & Batáry, P. (2019). Landscape configuration, organic management, and within‐field position drive functional diversity of spiders and carabids. Journal of Applied Ecology, 56(1), 63-72.
Korányi, D., Gallé, R., Torma, A., Gallé‐Szpisjak, N., & Batáry, P. (2023). Small grassland fragments and connectivity support high arthropod functional diversity in highly modified landscapes. Insect Conservation and Diversity, 16(5), 701-711.
Pinto, C. M., Pairo, P. E., Bellocq, M. I., & Filloy, J. (2021). Different land-use types equally impoverish but differentially preserve grassland species and functional traits of spider assemblages. Scientific Reports, 11(1), 10316.
Keinath, S., Frisch, J., Müller, J., Mayer, F., Struck, U., & Rödel, M. O. (2023). Species‐and sex‐dependent changes in body size between 1892 and 2017, and recent biochemical signatures in rural and urban populations of two ground beetle species. Ecology and Evolution, 13(7), e10329.
Deppe, F., & Fischer, K. (2023). Landscape type affects the functional diversity of carabid beetles in agricultural landscapes. Insect Conservation and Diversity, 16(4), 441-450.
Kędzior, R., & Kosewska, A. (2022). Landscape heterogeneity determines the diversity and life history traits of ground beetles (Coleoptera: Carabidae). Sustainability, 14(21), 13980.
Rischen, T., Kaffenberger, M., Plath, E., Wolff, J., & Fischer, K. (2023). Configurational landscape heterogeneity: Crop-fallow boundaries enhance the taxonomic diversity of carabid beetles and spiders. Agriculture, Ecosystems & Environment, 341, 108194.
Perez‐Alvarez, R., Grab, H., Polyakov, A., & Poveda, K. (2021). Landscape composition mediates the relationship between predator body size and pest control. Ecological Applications, 31(6), e02365.
Langraf, V., David, S., Babosová, R., Petrovičová, K., & Schlarmannová, J. (2020). Change of ellipsoid biovolume (EV) of ground beetles (Coleoptera, Carabidae) along an urban–suburban–rural gradient of Central Slovakia. Diversity, 12(12), 475.
Ivanković Tatalović, L., Anđelić, B., Jelić, M., Kos, T., A Benítez, H., & Šerić Jelaska, L. (2020). Fluctuating asymmetry as a method of assessing environmental stress in two predatory carabid species within Mediterranean agroecosystems. Symmetry, 12(11), 1890.
Gallé, R., Geppert, C., Földesi, R., Tscharntke, T., & Batáry, P. (2020). Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 48, 102-111.
Michalko, R., & Dvoryankina, V. (2019). Intraspecific phenotypic variation in functional traits of a generalist predator in an agricultural landscape. Agriculture, Ecosystems & Environment, 278, 35-42.
Ng, K., Barton, P. S., Blanchard, W., Evans, M. J., Lindenmayer, D. B., Macfadyen, S., ... & Driscoll, D. A. (2018). Disentangling the effects of farmland use, habitat edges, and vegetation structure on ground beetle morphological traits. Oecologia, 188, 645-657.
Chungu, D., Stadler, J., & Brandl, R. (2018). Converting forests to agriculture decreases body size of Carabid assemblages in Zambia. African Journal of Ecology, 56(2), 216-224.
da Silva, P. M., Oliveira, J., Ferreira, A., Fonseca, F., Pereira, J. A., Aguiar, C. A., ... & Santos, S. A. (2017). Habitat structure and neighbor linear features influence more carabid functional diversity in olive groves than the farming system. Ecological Indicators, 79, 128-138.
Mader, V., Diehl, E., Fiedler, D., Thorn, S., Wolters, V., & Birkhofer, K. (2017). Trade‐offs in arthropod conservation between productive and non‐productive agri‐environmental schemes along a landscape complexity gradient. Insect Conservation and Diversity, 10(3), 236-247.
Birkhofer, K., Gossner, M. M., Diekötter, T., Drees, C., Ferlian, O., Maraun, M., ... & Smith, H. G. (2017). Land‐use type and intensity differentially filter traits in above‐and below‐ground arthropod communities. Journal of Animal Ecology, 86(3), 511-520.
Hanson, H. I., Palmu, E., Birkhofer, K., Smith, H. G., & Hedlund, K. (2016). Agricultural land use determines the trait composition of ground beetle communities. PLoS One, 11(1), e0146329.
Yamanaka, S., Akasaka, T., Yamaura, Y., Kaneko, M., & Nakamura, F. (2015). Time-lagged responses of indicator taxa to temporal landscape changes in agricultural landscapes. Ecological Indicators, 48, 593-598.
Winqvist, C., Bengtsson, J., Öckinger, E., Aavik, T., Berendse, F., Clement, L. W., ... & Bommarco, R. (2014). Species’ traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. Journal of Insect Conservation, 18, 837-846.
Fischer, C., Schlinkert, H., Ludwig, M., Holzschuh, A., Gallé, R., Tscharntke, T., & Batáry, P. (2013). The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. Journal of Insect Conservation, 17, 1027-1038.
Rusch, A., Bommarco, R., Chiverton, P., Öberg, S., Wallin, H., Wiktelius, S., & Ekbom, B. (2013). Response of ground beetle (Coleoptera, Carabidae) communities to changes in agricultural policies in Sweden over two decades. Agriculture, ecosystems & environment, 176, 63-69.
Liu, Y., Axmacher, J. C., Wang, C., Li, L., & Yu, Z. (2012). Ground Beetle (Coleoptera: Carabidae) assemblages of restored semi‐natural habitats and intensively cultivated fields in Northern China. Restoration Ecology, 20(2), 234-239.
Wamser, S., Diekötter, T. I. M., Boldt, L., Wolters, V., & Dauber, J. (2012). Trait‐specific effects of habitat isolation on carabid species richness and community composition in managed grasslands. Insect Conservation and Diversity, 5(1), 9-18.
Drapela, T., Frank, T., Heer, X., Moser, D., & Zaller, J. G. (2011). Landscape structure affects activity density, body size and fecundity of Pardosa wolf spiders (Araneae: Lycosidae) in winter oilseed rape. European Journal of Entomology, 108(4).
Ribera, I., Dolédec, S., Downie, I. S., & Foster, G. N. (2001). Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology, 82(4), 1112-1129.
Chong, H., Zhu, Y., Lai, Q., Wu, S., Jiang, T., Zhang, D., & Xiao, H. (2023). Response of spider and epigaeic beetle assemblages to overwinter planting regimes and surrounding landscape compositions. Insects, 14(12), 951.
Simons, N. K., Weisser, W. W., & Gossner, M. M. (2016). Multi‐taxa approach shows consistent shifts in arthropod functional traits along grassland land‐use intensity gradient. Ecology, 97(3), 754-764.
Birkhofer, K., Smith, H. G., Weisser, W. W., Wolters, V., & Gossner, M. M. (2015). Land‐use effects on the functional distinctness of arthropod communities. Ecography, 38(9), 889-900.
Gossner, M. M., Lewinsohn, T. M., Kahl, T., Grassein, F., Boch, S., Prati, D., ... & Allan, E. (2016). Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 540(7632), 266-269.
Bucher, R., Batáry, P., Baudry, J., Beaumelle, L., Čerevková, A., de la Riva, E. G., ... & Birkhofer, K. (2024). Functional diversity of ground beetles improved aphid control but did not increase crop yields on European farms. Ecological Applications, 34(8), e3035.
Šerić Jelaska, L., Ivanković Tatalović, L., Kostanjšek, F., & Kos, T. (2022). Ground beetle assemblages and distribution of functional traits in olive orchards and vineyards depend on the agricultural management practice. BioControl, 67(3), 275-286.
Jacobsen, S. K., Sigsgaard, L., Johansen, A. B., Thorup-Kristensen, K., & Jensen, P. M. (2022). The impact of reduced tillage and distance to field margin on predator functional diversity. Journal of Insect Conservation, 26(3), 491-501.
Elo, M., Ketola, T., & Komonen, A. (2021). Species co-occurrence networks of ground beetles in managed grasslands. Community Ecology, 22(1), 29-40.
Michalko, R., & Košulič, O. (2020). The management type used in plum orchards alters the functional community structure of arthropod predators. International journal of pest management, 66(2), 173-181.
Mazzia, C., Pasquet, A., Caro, G., Thénard, J., Cornic, J. F., Hedde, M., & Capowiez, Y. (2015). The impact of management strategies in apple orchards on the structural and functional diversity of epigeal spiders. Ecotoxicology, 24, 616-625.
Kosewska, A., Skalski, T., & Nietupski, M. (2014). Effect of conventional and non-inversion tillage systems on the abundance and some life history traits of carabid beetles (Coleoptera: Carabidae) in winter triticale fields.
Batáry, P., Holzschuh, A., Orci, K. M., Samu, F., & Tscharntke, T. (2012). Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agriculture, Ecosystems & Environment, 146(1), 130-136.
Gailis, J., & Turka, I. (2014). The diversity and structure of ground beetles (Coleoptera: Carabidae) assemblages in differently managed winter wheat fields. Baltic Journal of Coleopterology, 14(1), 33-46.
Batáry, P., Holzschuh, A., Orci, K. M., Samu, F., & Tscharntke, T. (2012). Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agriculture, Ecosystems & Environment, 146(1), 130-136.
Fischer, C., Riesch, F., Tscharntke, T., & Batáry, P. (2021). Large carabids enhance weed seed removal in organic fields and in large-scale, but not small-scale agriculture. Landscape Ecology, 36, 427-438.
Giglio, A., Giulianini, P. G., Zetto, T., & Talarico, F. (2011). Effects of the pesticide dimethoate on a non-target generalist carabid, Pterostichus melas italicus (Dejean, 1828)(Coleoptera: Carabidae). Italian Journal of Zoology, 78(4), 471-477.
Godfrey, J. A., & Rypstra, A. L. (2018). Impact of an atrazine-based herbicide on an agrobiont wolf spider. Chemosphere, 201, 459-465.
Ikonov, A., Vujić, V., Büchs, W., Prescher, S., Sivčev, I., Sivcev, L., ... & Dudić, B. (2019). Does Application of Pyrethroid Insecticides Induce Morphological Variations of Oedothorax apicatus Blackwal 1850 (Araneae: Linyphiidae)?. Acta Zoologica Bulgarica, 71(4), 557-566.
Toivonen, M., Huusela, E., Hyvönen, T., Järvinen, A., & Kuussaari, M. (2024). Crop type rather than production method determines functional trait composition of insect communities on arable land in boreal agricultural landscapes.
Rusch, A., Birkhofer, K., Bommarco, R., Smith, H. G., & Ekbom, B. (2014). Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia, 175, 971-983.
Riggi, L. G., & Bommarco, R. (2019). Subsidy type and quality determine direction and strength of trophic cascades in arthropod food webs in agroecosystems. Journal of Applied Ecology, 56(8), 1982-1991.
Bourassa, S., Cárcamo, H. A., Spence, J. R., Blackshaw, R. E., & Floate, K. (2010). Effects of crop rotation and genetically modified herbicide-tolerant corn on ground beetle diversity, community structure, and activity density. The Canadian Entomologist, 142(2), 143-159.
Dominik, C., Seppelt, R., Horgan, F. G., Settele, J., & Václavík, T. (2022). Landscape heterogeneity filters functional traits of rice arthropods in tropical agroecosystems. Ecological Applications, 32(3), e2560.
Potapov, A. M., Dupérré, N., Jochum, M., Dreczko, K., Klarner, B., Barnes, A. D., ... & Scheu, S. (2020). Functional losses in ground spider communities due to habitat structure degradation under tropical land‐use change. Ecology, 101(3), e02957.
Maurey, E., Marrec, R., Brusse, T., Le Provost, G., Le Roux, V., Bergerot, B., & Caro, G. (2025). When size matters: a morphological measurement that informs on the potential pest control function by soil arthropod communities. Journal of Pest Science, 1-12.
Rusch, A., Birkhofer, K., Bommarco, R., Smith, H. G., & Ekbom, B. (2015). Predator body sizes and habitat preferences predict predation rates in an agroecosystem. Basic and Applied Ecology, 16(3), 250-259.
Ball, S. L., Woodcock, B. A., Potts, S. G., & Heard, M. S. (2015). Size matters: body size determines functional responses of ground beetle interactions. Basic and Applied Ecology, 16(7), 621-628.
Ali, K. A., & Willenborg, C. J. (2023). Allometric constraints on carabid diets: interspecific differences in carabid-to-seed mass ratios impact seed choice. Basic and Applied Ecology, 71, 85-97.
García, L. F., Velasco, A., Colmenárez, Y. C., Pétillon, J., & Cantor, F. (2022). Intra-and inter-specific effects in prey size capture by wolf spiders (Araneae: Lycosidae) against the fall armyworm Spodoptera frugiperda under laboratory conditions. Biocontrol Science and Technology, 32(9), 1132-1138.
Birkhofer, K., Djoudi, E. A., Schnerch, B., & Michalko, R. (2022). Climatic conditions and functional traits affect spider diets in agricultural and non‐agricultural habitats worldwide. Ecography, 2022(3), e06090.
Mishra, A., Kumar, B., & Rastogi, N. (2022). Do the food availability conditions influence the stage-specific prey choice and predation attributes of agroecosystem-inhabiting spiders?. Tropical Ecology, 63(3), 433-439.
