The Perspective of Using Essential Oils in Swine: review

Authors

  • Adrian-Dan Rășinar University of Life Sciences “King Mihai I” from Timișoara, Faculty of Bioengineering of Animal Resources
  • Tiberiu Polen
  • Sorin Octavian Voia
  • Eliza Simiz
  • Silvia Pătruică

Keywords:

essential oils, swine, chemical composition, biological effects, nutrition, action on pathogenic microorganisms

Abstract

In animal husbandry, the improper and excessive use of antibiotics has contributed to the emergence of bacterial strains resistant to their action. Over the past decades, the search for alternative strategies to antibiotics has received increasing attention. The antimicrobial properties of essential oils have made them viable alternatives in livestock production. Numerous researchers have investigated these natural compounds as potential substitutes for conventional antibiotics or as preventive measures against diseases in farm animals, including swine. However, in this species, research outcomes regarding the use of essential oils in both in vitro and in vivo (on-farm) conditions have been inconsistent. This variability is primarily due to differences in oil composition, purity, dosage, growth phases, and husbandry conditions. Some authors suggest that essential oils such as oregano, thyme, clove, or mint can improve the overall health status of pigs through their anti-inflammatory and antimicrobial properties. Other studies have highlighted their beneficial effects on gut microbiota balance, notably by inhibiting pathogenic bacteria and promoting beneficial microbial populations. Positive impacts on zootechnical performance have also been reported, including improved feed conversion efficiency and average daily gain. Additionally, certain studies point to a significant role in reducing oxidative stress and enhancing immune responses. The volatile and lipophilic nature of essential oils presents a challenge in ensuring their effective delivery to the pig intestine; however, this issue may be partially addressed through microencapsulation and nanotechnology. This review aims to assess how essential oils are currently used in swine feeding strategies and/or treatment protocols, focusing on their mechanisms of action as demonstrated by existing research.

References

Maggini, S.; Pierre, A.; Calder, P.C. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 2018, 10, 1531.

Ruzauskas, M.; Bartkiene, E.; Stankevicius, A.; Bernatoniene, J.; Zadeike, D.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Grigas, J.; Zokaityte, E.; et al. The Influence of Essential Oils on Gut Microbial Profiles in Pigs. Animals 2020, 10, 1734.

Celiktas, O.Y.; Kocabas, E.E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H.C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chemistry 2007, 100, 553-559, doi:https://doi.org/10.1016/j.foodchem.2005.10.011.

Ait Dra, L.; Ait Sidi Brahim, M.; Boualy, B.; Aghraz, A.; Barakate, M.; Oubaassine, S.; Markouk, M.; Larhsini, M. Chemical composition, antioxidant and evidence antimicrobial synergistic effects of Periploca laevigata essential oil with conventional antibiotics. Industrial Crops and Products 2017, 109, 746-752, doi:https://doi.org/10.1016/j.indcrop.2017.09.028.

Laxminarayan, R.; Van Boeckel, T.; Teillant, A. The economic costs of withdrawing antimicrobial growth promoters from the livestock sector. 2015.

Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences 2015, 112, 5649-5654, doi:doi:10.1073/pnas.1503141112.

Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology 2014, Volume 5 - 2014, doi:10.3389/fmicb.2014.00217.

Bengtsson, B.; and Wierup, M. Antimicrobial Resistance in Scandinavia after a Ban of Antimicrobial Growth Promoters. Animal Biotechnology 2006, 17, 147-156, doi:10.1080/10495390600956920.

Zhao, J.; Harper, A.F.; Estienne, M.J.; Webb, K.E., Jr.; McElroy, A.P.; Denbow, D.M. Growth performance and intestinal morphology responses in early weaned pigs to supplementation of antibiotic-free diets with an organic copper complex and spray-dried plasma protein in sanitary and nonsanitary environments1. Journal of Animal Science 2007, 85, 1302-1310, doi:10.2527/jas.2006-434.

Burt, S. Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology 2004, 94, 223-253, doi:https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils – A review. Food and Chemical Toxicology 2008, 46, 446-475, doi:https://doi.org/10.1016/j.fct.2007.09.106.

Khalil, A.A.; Rahman, U.u.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Advances 2017, 7, 32669-32681, doi:10.1039/C7RA04803C.

Farhath, S.; Vijaya, P.; Vimal, M. Immunomodulatory activity of geranial, geranial acetate, gingerol, and eugenol essential oils: evidence for humoral and cell-mediated responses. Avicenna J Phytomed 2013, 3, 224-230.

Franz, C.; Baser, K.; Windisch, W. Essential oils and aromatic plants in animal feeding – a European perspective. A review. Flavour and Fragrance Journal 2010, 25, 327-340, doi:https://doi.org/10.1002/ffj.1967.

Franz, C.; Novak, J. Sources of essential oils. . In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK,: 2010; pp. 39-82.

PuvaČA, N.; StanaĆEv, V.; GlamoČIĆ, D.; LeviĆ, J.; PeriĆ, L.; StanaĆEv, V.; MiliĆ, D. Beneficial effects of phytoadditives in broiler nutrition. World's Poultry Science Journal 2013, 69, 27-34, doi:10.1017/S0043933913000032.

Kumar, A.; Shukla, R.; Singh, P.; Prasad, C.S.; Dubey, N.K. Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities. Innovative Food Science & Emerging Technologies 2008, 9, 575-580, doi:https://doi.org/10.1016/j.ifset.2007.12.005.

Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry1. Journal of Animal Science 2008, 86, E140-E148, doi:10.2527/jas.2007-0459.

Maenner, K.; Vahjen, W.; Simon, O. Studies on the effects of essential-oil-based feed additives on performance, ileal nutrient digestibility, and selected bacterial groups in the gastrointestinal tract of piglets1. Journal of Animal Science 2011, 89, 2106-2112, doi:10.2527/jas.2010-2950.

Silva, N.C.C.; L., B.; N., S.L.; and Fernandes Junior, A. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Natural Product Research 2012, 26, 1510-1514, doi:10.1080/14786419.2011.564582.

Faleiro, M.L. The mode of antibacterial action of essential oils. Science against microbial pathogens: communicating current research and technological advances 2011, 2, 1143-1156.

Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. Journal of Animal Science and Biotechnology 2015, 6, 7, doi:10.1186/s40104-015-0004-5.

Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989-4006.

Moyler, D. CO2 extraction and other new technologies: an update on commercial adoption. In Proceedings of the International Federation of Essential Oils and Aroma Trades—21st International Conference on Essential Oils and Aroma’s. IFEAT, London, 1998; pp. 33-39.

Bauer, K.; Garbe, D.; Surburg, H. Common fragrance and flavor materials: preparation, properties and uses; Wiley-VCH, Weinheim: 2001.

Senatore, F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy). Journal of agricultural and food chemistry 1996, 44, 1327-1332.

Russo, M.; Galletti, G.C.; Bocchini, P.; Carnacini, A. Essential oil chemical composition of wild populations of italian oregano spice (Origanum v ulgare ssp. h irtum (Link) Ietswaart): a preliminary evaluation of their use in chemotaxonomy by cluster analysis. 1. Inflorescences. Journal of Agricultural and Food Chemistry 1998, 46, 3741-3746.

Santana de Oliveira, M.; Vostinaru, O.; Rigano, D.; de Aguiar Andrade, E.H. Editorial: Bioactive compounds present in essential oils: Advances and pharmacological applications. Frontiers in Pharmacology 2023, Volume 14 - 2023, doi:10.3389/fphar.2023.1130097.

Casiglia, S.; Bruno, M.; Scandolera, E.; Senatore, F.; Senatore, F. Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian Journal of Chemistry 2019, 12, 2704-2712, doi:https://doi.org/10.1016/j.arabjc.2015.05.017.

Kryvtsova, M.; Hrytsyna, M.; Salamon, I.; Skybitska, M.; Novykevuch, O. Chemotypes of Species of the Genus Thymus L. in Carpathians Region of Ukraine—Their Essential Oil Qualitative and Quantitative Characteristics and Antimicrobial Activity. Horticulturae 2022, 8, 1218.

Pandur, E.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants (Basel) 2022, 11, doi:10.3390/antiox11071330.

Trendafilova, A.; Todorova, M.; Ivanova, V.; Zhelev, P.; Aneva, I. Essential Oil Composition of Five Thymus Species from Bulgaria. Chem Biodivers 2021, 18, e2100498, doi:10.1002/cbdv.202100498.

Kim, Y.-H.; Lee, J.-C.; Choi, Y.-H. Essential oils of Thymus quinquecostatus celakov. and Thymus magnus Nakai. Korean Journal of Medicinal Crop Science 1994, 2, 234-240.

Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial pathogenesis 2019, 134, 103580.

Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125.

Nurzyńska-Wierdak, R.; Walasek-Janusz, M. Chemical Composition, Biological Activity, and Potential Uses of Oregano (Origanum vulgare L.) and Oregano Essential Oil. Pharmaceuticals 2025, 18, 267.

HRISTOVA, R.; RISTIC, M.; BRKIC, D.; STEFKOV, G.; KULEVANOVA, S. Comparative analysis of essential oil composition of Origanum vulgare from Macedonia and commercially available Origani herba. Acta pharmaceutica (Zagreb) 1999, 49, 299-305.

Ivask, K.; Orav, A.; Kailas, T.; Raal, A.; Arak, E.; Paaver, U. Composition of the Essential Oil from Wild Marjoram (Origanum vulgare L.ssp. vulgare) Cultivated in Estonia. Journal of Essential Oil Research - J ESSENT OIL RES 2005, 17, 384-387, doi:10.1080/10412905.2005.9698938.

Stešević, D.; Jaćimović, Ž.; Šatović, Z.; Šapčanin, A.; Jančan, G.; Kosović, M.; Damjanović-Vratnica, B. Chemical Characterization of Wild Growing Origanum vulgare Populations in Montenegro. Natural Product Communications 2018, 13, 1934578X1801301031, doi:10.1177/1934578x1801301031.

Jnaid, Y.; Yacoub, R.; Al-Biski, F. Antioxidant and antimicrobial activities of Origanum vulgare essential oil. 2016, 23, 1706-1710.

Mockute, D.; Bernotiene, G.; Judzentiene, A. The essential oil of Origanum vulgare L. ssp. vulgare growing wild in vilnius district (Lithuania). Phytochemistry 2001, 57, 65-69, doi:10.1016/s0031-9422(00)00474-x.

Andi, S.; Nazderi, V.; Hadian, J.; Zamani, Z. Variability of essential oil composition of Origanum vulgare L. ssp. vulgare populations from Iran. Med. Aromat. Plant Sci. Biotechnol 2011, 5, 152-155.

Jianu, C.; Lukinich-Gruia, A.T.; Rădulescu, M.; Mioc, M.; Mioc, A.; Șoica, C.; Constantin, A.T.; David, I.; Bujancă, G.; Radu, R.G. Essential Oil of Origanum vulgare var. aureum L. from Western Romania: Chemical Analysis, In Vitro and In Silico Screening of Its Antioxidant Activity. Applied Sciences 2023, 13, 5076.

Khan, S.T.; Khan, M.; Ahmad, J.; Wahab, R.; Abd-Elkader, O.H.; Musarrat, J.; Alkhathlan, H.Z.; Al-Kedhairy, A.A. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express 2017, 7, 49, doi:10.1186/s13568-017-0344-y.

Arámbula, C.I.; Diaz, C.E.; Garcia, M.I. Performance, chemical composition and antibacterial activity of the essential oil of Ruta chalepensis and Origanum vulgare. Journal of Physics: Conference Series 2019, 1386, 012059, doi:10.1088/1742-6596/1386/1/012059.

Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology 2015, 6, 58, doi:10.1186/s40104-015-0055-7.

Althunibat, O.; Qaralleh, H.; Abboud, M.; Khleifat, K.; Majali, I.; Susanti, D.; Dalaeen, H.; Dalaeen, S.; Al-Dalin, A.; Rayyan, W. Effect of Thymol and Carvacrol, the Major Components of Thymus capitatus on the Growth of Pseudomonas aeruginosa. 2016.

Speranza, B.; Bevilacqua, A.; Campaniello, D.; Altieri, C.; Corbo, M.R.; Sinigaglia, M. Minimal Inhibitory Concentrations of Thymol and Carvacrol: Toward a Unified Statistical Approach to Find Common Trends. Microorganisms 2023, 11, doi:10.3390/microorganisms11071774.

Drăgan, F.; Moisa, C.F.; Teodorescu, A.; Burlou-Nagy, C.; Fodor, K.I.; Marcu, F.; Popa, D.E.; Teaha, D.I.M. Evaluating in vitro antibacterial and antioxidant properties of Origanum vulgare volatile oil. Farmacia 2022, 70.

Walasek-Janusz, M.; Grzegorczyk, A.; Malm, A.; Nurzyńska-Wierdak, R.; Zalewski, D. Chemical Composition, and Antioxidant and Antimicrobial Activity of Oregano Essential Oil. Molecules 2024, 29, 435.

Brdjanin, S.; Bogdanovic, N.; Kolundzic, M.; Milenković, M.; Golić, N.; Kojic, M.; Kundaković, T. Antimicrobial activity of oregano (Origanum vulgare L.): And basil (Ocimum basilicum L.): Extracts. Advanced technologies 2015, 4, 5-10, doi:10.5937/savteh1502005B.

Coccimiglio, J.; Alipour, M.; Jiang, Z.H.; Gottardo, C.; Suntres, Z. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents. Oxid Med Cell Longev 2016, 2016, 1404505, doi:10.1155/2016/1404505.

Paranagama, P.A.; Wimalasena, S.; Jayatilake, G.S.; Jayawardena, A.L.; Senanayake, U.M.; Mubarak, A. A comparison of essential oil constituents of bark, leaf root and fruit of cinnamon (cinnamomum zeylanicum Blum), grown in Sri Lanka. 2001.

El-Baroty, G.; El-Baky, H.; Farag, R.; Saleh, M. Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. African Journal of Biochemistry Research 2010, 4, 167–174.

Pooja, A.; Arun, N.; Maninder, K. GC-MS profile of volatile oils of Cinnamomum zeylanicum Blume and Ocimum kilimandscharicum baker ex Gurke. International Journal of Pharmaceutical Sciences Review and Research 2013, 19, 124-126.

Elgendy, E.; Ibrahim, H.; Elmeherry, H.; Sedki, A.; Mekhemer, F. Chemical and Biological Comparative in Vitro Studies of Cinnamon Bark and Lemon Peel Essential Oils. Food and Nutrition Sciences 2017, 08, 110-125, doi:10.4236/fns.2017.81008.

Adinew, B. GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon bark growing in South-west of Ethiopia. International Journal of Herbal Medicine 2014, 1, 22-31.

El-wasef, N.; Elafify, M.; Kasem, N.G.; Shata, R.R.; Al-Ashmawy, M. Antimicrobial effect of cinnamon oil, L-lysine, and beta-carotene on multi-drug resistant Listeria monocytogenes isolated from milk and dairy products. Journal of Advanced Veterinary Research 2025, 15, 87-93.

Yursida, Y.; Andrew, F.; Agustina, K.; Mareza, E.; Kalsum, U.; Ikhwani, I.; Rahayuningsih, S.; Yuniarti, E.; Putra, N.R. Harnessing the power of cinnamon oil: A review of its potential as natural biopesticide and its implications for food security. Heliyon 2025, 11, e41827, doi:10.1016/j.heliyon.2025.e41827.

Kafle, L.; Kayastha, S.; Gurung, R.; Prajapati, R. Insecticidal properties of cinnamon oil and its bioactive compounds. Cinnamon 2025, 545-555.

Babateen, A.M.; Altuwairki, D. The neuroprotective potentials of cinnamon oil. In Cinnamon; Elsevier: 2025; pp. 289-314.

Kennouche, A.; Benkaci-Ali, F.; Scholl, G.; Eppe, G. Chemical Composition and Antimicrobial Activity of the Essential Oil of Eugenia caryophyllata Cloves Extracted by Conventional and Microwave Techniques. Journal of Biologically Active Products from Nature 2015, 5, doi:10.1080/22311866.2014.961100.

González-Rivera, J.; Duce, C.; Falconieri, D.; Ferrari, C.; Ghezzi, L.; Piras, A.; Tine, M.R. Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal analysis. Innovative Food Science & Emerging Technologies 2016, 33, 308-318.

Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387.

Khalilzadeh, E.; Hazrati, R.; Saiah, G.V. Effects of topical and systemic administration of Eugenia caryophyllata buds essential oil on corneal anesthesia and analgesia. Res Pharm Sci 2016, 11, 293-302, doi:10.4103/1735-5362.189297.

Correia, A.; Pedrazzani, A.; Mendonça, R.; Massucatto, A.; Ozório, R.; Tsuzuki, M. Basil, tea tree and clove essential oils as analgesics and anaesthetics in Amphiprion clarkii (Bennett, 1830). Brazilian Journal of Biology 2017, 78, 436-442.

Fujimoto, R.Y.; Pereira, D.M.; Silva, J.C.S.; de Oliveira, L.C.A.; Inoue, L.; Hamoy, M.; de Mello, V.J.; Torres, M.F.; Barbas, L.A.L. Clove oil induces anaesthesia and blunts muscle contraction power in three Amazon fish species. Fish Physiol Biochem 2018, 44, 245-256, doi:10.1007/s10695-017-0430-8.

Ghanawi, J.; Saoud, G.; Zakher, C.; Monzer, S.; Saoud, I.P. Clove oil as an anaesthetic for Australian redclaw crayfish Cherax quadricarinatus. Aquaculture Research 2019, 50, 3628-3632.

da Silva, D.R.; Arvigo, A.L.; Giaquinto, P.C.; Delicio, H.C.; Barcellos, L.J.G.; Barreto, R.E. Effects of clove oil on behavioral reactivity and motivation in Nile tilapia. Aquaculture 2021, 532, 736045.

Rajkowska, K.; Nowak, A.; Kunicka-Styczyńska, A.; Siadura, A. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC advances 2016, 6, 97199-97207.

Ramadan, M.; Ali, M.; Ghanem, K.; El-Ghorab, A.; Ramadan, b. Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines. Grasas y Aceites 2015, 66, 17-3495, doi:10.3989/gya.0955142.

Das, A.; K, H.; S, K.D.; K, H.R.; Jayaprakash, B. Evaluation of Therapeutic Potential of Eugenol-A Natural Derivative of Syzygium aromaticum on Cervical Cancer. Asian Pac J Cancer Prev 2018, 19, 1977-1985, doi:10.22034/apjcp.2018.19.7.1977.

Najar, B.; Shortrede, J.E.; Pistelli, L.; Buhagiar, J. Chemical Composition and in Vitro Cytotoxic Screening of Sixteen Commercial Essential Oils on Five Cancer Cell Lines. Chem Biodivers 2020, 17, e1900478, doi:10.1002/cbdv.201900478.

El-Darier, S.M.; El-Ahwany, A.M.; Elkenany, E.T.; Abdeldaim, A.A. An in vitro study on antimicrobial and anticancer potentiality of thyme and clove oils. Rendiconti Lincei. Scienze Fisiche e Naturali 2018, 29, 131-139.

Uchôa Lopes, C.M.; Saturnino de Oliveira, J.R.; Holanda, V.N.; Rodrigues, A.Y.F.; Martins da Fonseca, C.S.; Galvão Rodrigues, F.F.; Camilo, C.J.; Lima, V.L.d.M.; Coutinho, H.D.M.; Kowalski, R. GC-MS analysis and hemolytic, antipyretic and antidiarrheal potential of Syzygium aromaticum (Clove) essential oil. Separations 2020, 7, 35.

Sugihartini, N.; Prabandari, R.; Yuwono, T.; Rahmawati, D. THE ANTI-INFLAMMATORY ACTIVITY OF ESSENTIAL OIL OF CLOVE (Syzygium aromaticum) IN ABSORPTION BASE OINTMENT WITH ADDITION OF OLEIC ACID AND PROPYLENE GLYCOL AS ENHANCER. International Journal of Applied Pharmaceutics 2019, 106-109, doi:10.22159/ijap.2019.v11s5.T0081.

Han, X.; Parker, T.L. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm Biol 2017, 55, 1619-1622, doi:10.1080/13880209.2017.1314513.

Marmouzi, I.; Karym, E.M.; Alami, R.; El Jemli, M.; Kharbach, M.; Mamouch, F.; Attar, A.; Faridi, B.; Cherrah, Y.; Faouzi, M.E.A. Modulatory effect of Syzygium aromaticum and Pelargonium graveolens on oxidative and sodium nitroprusside stress and inflammation. Oriental Pharmacy and Experimental Medicine 2019, 19, 201-210.

Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825.

Peiris, M.; Weerts, Z.; Aktar, R.; Masclee, A.A.M.; Blackshaw, A.; Keszthelyi, D. A putative anti-inflammatory role for TRPM8 in irritable bowel syndrome-An exploratory study. Neurogastroenterol Motil 2021, 33, e14170, doi:10.1111/nmo.14170.

Azad, A.K.; Doolaanea, A.A.; Al-Mahmood, S.M.A.; Kennedy, J.F.; Chatterjee, B.; Bera, H. Electro-hydrodynamic assisted synthesis of lecithin-stabilized peppermint oil-loaded alginate microbeads for intestinal drug delivery. Int J Biol Macromol 2021, 185, 861-875, doi:10.1016/j.ijbiomac.2021.07.019.

Kim, S.Y.; Han, S.D.; Kim, M.; Mony, T.J.; Lee, E.S.; Kim, K.M.; Choi, S.H.; Hong, S.H.; Choi, J.W.; Park, S.J. Mentha arvensis Essential Oil Exerts Anti-Inflammatory in LPS-Stimulated Inflammatory Responses via Inhibition of ERK/NF-κB Signaling Pathway and Anti-Atopic Dermatitis-like Effects in 2,4-Dinitrochlorobezene-Induced BALB/c Mice. Antioxidants (Basel) 2021, 10, doi:10.3390/antiox10121941.

Alliger, K.; Khalil, M.; König, B.; Weisenburger, S.; Koch, E.; Engel, M. Menthacarin attenuates experimental colitis. Phytomedicine 2020, 77, 153212, doi:10.1016/j.phymed.2020.153212.

Zouari-Bouassida, K.; Trigui, M.; Makni, S.; Jlaiel, L.; Tounsi, S. Seasonal Variation in Essential Oils Composition and the Biological and Pharmaceutical Protective Effects of Mentha longifolia Leaves Grown in Tunisia. Biomed Res Int 2018, 2018, 7856517, doi:10.1155/2018/7856517.

Uzair, B.; Niaz, N.; Bano, A.; Ali Khan, B.; Zafar, N.; Iqbal, M.; Tahira, R.; Fasim, F. Essential oils showing in vitro anti MRSA and synergistic activity with penicillin group of antibiotics. Pakistan journal of pharmaceutical sciences 2017, 30.

Valková, V.; Ďúranová, H.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Kačániová, M. In Vitro Antimicrobial Activity of Lavender, Mint, and Rosemary Essential Oils and the Effect of Their Vapours on Growth of Penicillium spp. in a Bread Model System. Molecules 2021, 26, 3859.

Shahbazi, Y. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria. J Pathog 2015, 2015, 916305, doi:10.1155/2015/916305.

Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food science and biotechnology 2017, 26, 1675-1683.

Civitelli, L.; Panella, S.; Marcocci, M.E.; De Petris, A.; Garzoli, S.; Pepi, F.; Vavala, E.; Ragno, R.; Nencioni, L.; Palamara, A.T.; et al. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine 2014, 21, 857-865, doi:10.1016/j.phymed.2014.01.013.

Lang, M.; Ferron, P.J.; Bursztyka, J.; Montjarret, A.; Duteil, E.; Bazire, A.; Bedoux, G. Evaluation of immunomodulatory activities of essential oils by high content analysis. J Biotechnol 2019, 303, 65-71, doi:10.1016/j.jbiotec.2019.07.010.

Kim, M.H.; Park, S.J.; Yang, W.M. Inhalation of Essential Oil from Mentha piperita Ameliorates PM10-Exposed Asthma by Targeting IL-6/JAK2/STAT3 Pathway Based on a Network Pharmacological Analysis. Pharmaceuticals (Basel) 2020, 14, doi:10.3390/ph14010002.

Yi, W.; Wetzstein, H.Y. Anti-tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects. J Sci Food Agric 2011, 91, 1849-1854, doi:10.1002/jsfa.4394.

Liu, X.; Sun, Z.-L.; Jia, A.-R.; Shi, Y.-P.; Li, R.-H.; Yang, P.-M. Extraction, Preliminary Characterization and Evaluation of in Vitro Antitumor and Antioxidant Activities of Polysaccharides from Mentha piperita. International Journal of Molecular Sciences 2014, 15, 16302-16319.

Lau, B.K.; Karim, S.; Goodchild, A.K.; Vaughan, C.W.; Drew, G.M. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons. Br J Pharmacol 2014, 171, 2803-2813, doi:10.1111/bph.12602.

Kennedy, D.; Okello, E.; Chazot, P.; Howes, M.-J.; Ohiomokhare, S.; Jackson, P.; Haskell-Ramsay, C.; Khan, J.; Forster, J.; Wightman, E. Volatile terpenes and brain function: Investigation of the cognitive and mood effects of Mentha× Piperita L. essential oil with in vitro properties relevant to central nervous system function. Nutrients 2018, 10, 1029.

Leijon, S.C.M.; Neves, A.F.; Breza, J.M.; Simon, S.A.; Chaudhari, N.; Roper, S.D. Oral thermosensing by murine trigeminal neurons: modulation by capsaicin, menthol and mustard oil. J Physiol 2019, 597, 2045-2061, doi:10.1113/jp277385.

Ranjbar, M.; Kiani, M.; Nikpay, A. Antioxidant and scolicidal activities of four Iranian Mentha species (Lamiaceae) in relation to phenolic elements. Journal of Herbmed Pharmacology 2020, 9, 200-208.

Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 1999, 86, 985-990, doi:10.1046/j.1365-2672.1999.00780.x.

Saad, N.; Muller, C.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal 2013, 28, doi:10.1002/ffj.3165.

Wenk, C. Einsatz von Kräutern und deren Extrakten in der Tierernährung: Erwartungen und Möglichkeiten. In Proceedings of the 4. BOKU-Symposium TIERERNÄHRUNG Tierernährung ohne antibiotische Leistungsförderer, 2005.

Downloads

Published

2025-11-03

Issue

Section

Technologies Applied in Animal Husbandry