Valorisation of Products and By-Products Resulting from Sericulture and Moriculture
Keywords:
Bombyx mori, cocoon, Morus spp., silk, silkwormsAbstract
In addition to natural silk, sericulture activity also generates numerous by-products with high economic value, used in a wide range of fields: medicine, biotechnology, cosmetics, and agriculture. Their efficient management contributes to optimizing production and increasing the sustainability of the silk industry. Silk proteins, fibroin and sericin, have a significant impact in the medical and cosmetic fields, offering innovative solutions for tissue regeneration, skin care and the development of advanced biomaterials. The intelligent use of sericulture waste transformed into organic fertilizers contributes to improving soil fertility and supporting organic agriculture. Silkworm chrysalis is a high-quality protein source due to its high content of protein and essential amino acids. It can be used both in animal feed, including poultry, pigs and fish, and in the human food industry, with the potential to become a sustainable alternative to conventional proteins. Mulberry leaves (Morus spp.) are the main food source for silkworms, having great importance not only in sericulture, but also in the pharmaceutical and food industries. Mulberries are also appreciated for their nutritional value and beneficial health properties, being used in the food industry to obtain juices, jams and other derived products. Sericulture is not just an activity based on silk production, but offers multiple resources with varied applications, which can add economic value and support the development of related industries.
References
Pop, L. L., Mărghitaș, L. A., Dezmirean, D. S., Bobiș, O., & Moise, A. R. (2019). Clasificarea unor rase și hibrizi românești de viermi de mătase folosind metoda indexului de evaluare multicriterială. Scientific Papers. Series D. Animal Science, 62(1), 322-330.
Bindroo, B. B. (2013). Sericulture and Silk Production: A Practical Manual. Springer; Jolly, M. S. (1987). "Economic Significance of Sericulture". The Indian Textile Journal.
Goldsmith, M. R., & Shimada, T. (2005). "The Silkworm Genome: A Model for Lepidopteran Genomics". Annual Review of Entomology.
Altman, G. H., et al. (2003). "Silk Biomaterials in Tissue Engineering". Biomaterials.
Sehnal, F., & Sutherland, T. (2008). Silk Production: Origin, Structure, and Applications.
Zhang, Y. Q. (2002). "Applications of Natural Silk Protein Sericin in Biomaterials". Biotechnology Advances.
Rockwood, D. N., Preda, R. C., Yücel, T., Wang, X., Lovett, M. L., & Kaplan, D. L. (2011). Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 6(10), 1612–1631.
Bhat, V. P. (2012). Sericulture: Livelihoods and Sustainability. Oxford University Press.
Liu, Y. (2015). Sustainable Sericulture: Rearing Silkworms for Efficient Silk Production. Springer.
Tănase, D. (2009). Cultura dudului în România: moricultura - sursa de noi produse comerciale. București: Estfalia.
Rusu, T., & Ioniță, M. (2014). Impactul moriculturii asupra economiei rurale din România. Buletinul Universității de Științe Agricole și Medicină Veterinară Cluj-Napoca, 71(2), 111-115.
Săndulescu, M. (2012). Moricultura și sericicultura: Tehnologii și aplicabilitate. Editura Academiei României.
Stănciulescu, M., & Popescu, A. (2011). Utilizarea fructelor de dud în industria alimentară și farmaceutică. Editura Academiei României.
Giora, D., Marchetti, G., Cappellozza, S., Assirelli, A., Saviane, A., Sartori, L., & Marinello, F. (2022). Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-products. Insects, 13(7), 568.
Cramer, E. (1865). Ueber die Bestandtheile der Seide. Journal für praktische Chemie, 96, 76–98.
Zhou, Z., Zhang, S., Cao, Y., Marelli, B., Xia, X., & Tao, T. H. (2018). Engineering the future of silk materials through advanced manufacturing. Advanced Materials, 30(33), 1706983.
Li, G., Li, Y., Chen, G., He, J., Han, Y., Wang, X., & Kaplan, D. L. (2015). Silk‐based biomaterials in biomedical textiles and fiber‐based implants. Advanced healthcare materials, 4(8), 1134-1151.
Meyers, M. A., McKittrick, J., & Chen, P. Y. (2013). Structural biological materials: critical mechanics-materials connections. science, 339(6121), 773-779.
Wu, J. H., Wang, Z., & Xu, S. Y. (2007). Preparation and characterization of sericin powder extracted from silk industry wastewater. International Journal of Biological Macromolecules, 41(3), 259–264.
Teramoto, H., & Miyazawa, M. (2005). Molecular orientation behavior of silk sericin film as studied by wide-angle X-ray scattering and infrared spectroscopy. Biomacromolecules, 6(4), 2049–2057.
Jaramillo-Quiceno, N., Callone, E., Dirè, S., Álvarez-López, C., & Motta, A. (2021). Boosting sericin extraction through alternative silk sources. Polymer Journal, 53(12), 1425-1437.
Singh, A., & Kumar, R. (2013). Sericulture Handbook Vol 1. Biotech Books. ISBN: 978-8176222938. Aquaculture Research, 50(6), 1781–1793.
Sogbesan, A. O., Ayotunde, E. O., & Ajao, A. O. (2019). Evaluation of silkworm pupae (Bombyx mori) meal as a substitute for fishmeal in the diet of African catfish (Clarias gariepinus).
Kunz, R. I., Brancalhão, R. M. C., Ribeiro, L. D. F. C., & Natali, M. R. M. (2016). Silkworm sericin: properties and biomedical applications. BioMed research international, 2016(1), 8175701.
Manjunath, R. N., Kumar, A., & Arun Kumar, K. P. (2020). Utilisation of sericulture waste by employing possible approaches. In Contaminants in Agriculture: Sources, Impacts and Management (pp. 385-398). Cham: Springer International Publishing.
DEZMIREAN, D. S., & MĂRGHITAŞ, L. A. (2013). Sericulture Status and Developing Strategies in Romania. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 70(1).
Liu, J.-P. (2019). Sericulture Development in Guangdong, South China: A Successful Model for Sub-/Tropical Sericulture. Regional Sericulture Training Centre for Asia-Pacific, South China Agricultural University.
Ercisli, S. (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution, 51(4), 419–435.
Chauhan, T. P. S., & Tayal, M. K. (2017). Mulberry sericulture. In Industrial entomology (pp. 197-263). Singapore: Springer Singapore.
Hwang, S., & Lee, M. (2010). Morus spp. as a Source of Food and Medicine: A Review. Journal of Medicinal Plants Research, 4(3), 82–92.
Wang, Z., Li, X., & Xu, J. (2011). Mulberry Leaf Extract and Its Potential as an Antidiabetic Agent. Diabetology & Metabolic Syndrome, 3(1), 31.
Kim, H. B., Ryu, S., & Baek, J. S. (2022). The effect of hot-melt extrusion of mulberry leaf on the number of active compounds and antioxidant activity. Plants, 11(22), 3019.
Kim, Y., & Lee, H. (2016). Antioxidant Effects of Mulberry Leaf. Journal of Korean Society of Food Science and Nutrition, 45(1), 89–96.
Lee, Y., & Hwang, K. T. (2017). Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. Scientia Horticulturae, 217, 189-196.
Zhang H, Ma ZF, Luo X, Li X. Effects of Mulberry Fruit (Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants. 2018; 7(5):69. https://doi.org/10.3390/antiox7050069
Han, S. Y., Park, C. W., Kim, B. Y., & Lee, S. H. (2015). Effect of the addition of various cellulose nanofibers on the properties of sheet of paper mulberry bast fiber. Journal of the Korean Wood Science and Technology, 43(6), 730-739.
Doliș, M. G., Diniță, G., & Pânzaru, C. (2022). Contributions to study of mulberry leaf use by Bombyx mori larvae. Scientific Papers. Series D. Animal Science, 65(1).
