Integrated Multi-Trophic Aquaculture in Freshwater Systems in the Context of the Circular Economy – a Review

Authors

  • Sandra Mihailov
  • Silvia Pătruică
  • Adrian Grozea

Keywords:

circular economy, Integrated Multi-Trophic Aquaculture, recirculating aquaculture system

Abstract

Aquaculture is among the fastest-growing industries worldwide, playing a key role in feeding a continuously expanding global population. This accelerated development calls for the adoption of innovative technologies, efficient culture systems, and sustainable production practices. In this context, recirculating aquaculture systems (RAS) are considered a strategic solution for meeting the increasing demand for aquatic products, thanks to their capacity to optimize resource use and reduce environmental pressure. Additionally, the integration of new and adaptable species into Integrated Multi-Trophic Aquaculture (IMTA) or aquaponic systems, especially in freshwater environments, significantly enhances the efficiency and sustainability of modern aquaculture. Integrating IMTA into RAS enables efficient water use, more rigorous biosecurity control, and a significant reduction in nutrient emissions. Moreover, incorporating hydroponic components enhances the benefits of these systems by allowing the cultivation of edible plants that utilize residual nutrients and contribute to strengthening the circular nature of the system. Through resource valorization, waste reduction, and production diversification, IMTA emerges as a key model for modern, sustainable, and responsible aquaculture, with a positive impact on ecosystem health and global food security. This review synthesizes the most recent research on IMTA, highlighting its potential in the transition towards sustainable aquaculture, in full alignment with the principles of the circular economy. IMTA involves the co-cultivation of species from different trophic levels within a system that transforms organic and inorganic waste into valuable resources for other cultured organisms. This model optimizes nutrient use, reduces environmental impact, and diversifies production, while also offering additional economic opportunities.

References

Allison, E. H., Aquaculture, Fisheries, Poverty and Food Security, The WorldFish Center, Penang, Malaysia, 2011.

Béné, C., Arthur, R., Norbury, H., et al., Contribution of Fisheries and Aquaculture to Food Security and Poverty Reduction: Assessing the Current Evidence, World Development, 2016, 79, 177–196.

Food and Agriculture Organization (FAO), FAO report: Global fisheries and aquaculture production reaches a new record high, n.d. Home page address: https://www.fao.org/newsroom/detail/fao-report-global-fisheries-and-aquaculture-production-reaches-a-new-record-high/en

International Association for Fish, Fisheries and Development (IAFFD), Overview of aquaculture and aquafeed production, n.d. Home page address: https://www.iaffd.com/aquaoverview.html

Ahmed, N., Thompson, S., Glaser, M., Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability, Environmental Management, 2019, 63, 2, 159–172.

Riechers, M., Fanini, L., Apicella, A., et al., Plastics in Our Ocean as Transdisciplinary Challenge, Marine Pollution Bulletin, 2021, 164, 112051.

Yan, H. F., Kyne, P. M., Jabado, R. W., et al., Overfishing and Habitat Loss Drive Range Contraction of Iconic Marine Fishes to Near Extinction, Science Advances, 2021, 7, 7, 1–10.

Arbour, A. J., Bhatt, P., Simsek, H., Brown, P. B., Huang, J. Y., Life Cycle Assessment on Environmental Feasibility of Microalgae-Based Wastewater Treatment for Shrimp Recirculating Aquaculture Systems, Bioresource Technology, 2024, 399, 130578

Ropicki, A., Garlock, T., Farzad, R., Hazell, J. E., Recirculating Aquaculture System-Based Production as a Pathway to Increase Aquaculture in Developed Countries: The Case of the United States Aquaculture, Aquaculture Economics & Management, 2024, 28, 4, 515–536.

Ranjan, R., Tsukuda, S., Good, C., Effects of Image Data Quality on a Convolutional Neural Network Trained In-Tank Fish Detection Model for Recirculating Aquaculture Systems, Computers and Electronics in Agriculture, 2023, 205, 107644

Ahmed, N., Turchini, G. M., Recirculating Aquaculture Systems (RAS): Environmental Solution and Climate Change Adaptation, Journal of Cleaner Production, 2021, 297, 126604

Badiola, M., Basurko, O. C., Gabina, G., Mendiola, D., Integration of Energy Audits in the Life Cycle Assessment Methodology to Improve the Environmental Performance Assessment of Recirculating Aquaculture Systems, Journal of Cleaner Production, 2017, 157, 155–166

Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P., Mendiola, D., Energy Use in Recirculating Aquaculture Systems (RAS): A Review, Aquacultural Engineering, 2018, 81, 57–70

Edwards, P., Aquaculture Environment Interactions: Past, Present and Likely Future Trends, Aquaculture, 2015, 447, 2–14.

Popp, J., Váradi, L., Békefi, E., Péteri, A., Gyalog, G., Lakner, Z., Oláh, J., Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study, Sustainability, 2018, 10, 177

Grozea, A., Acvacultură, Eurobit, Timișoara, 2010

Arcade, M. C., Costache, M., Bahaciu, G. V., Dragomir, N., Nicolae, C. G., IMTA Key Concept for Developing a Strategy to Increase Aquaculture Production and Improve Environmental Sustainability, Scientific Papers. Series D. Animal Science, 2023, LXVI, 1.

Gupta, S., Makridis, P., Henry, I., Velle-George, M., Ribicic, D., Bhatnagar, A., Skaska-Tuomi, K., Daneshvar, E., Ciani, E., Persson, D., Netzer, R., Recent Developments in Recirculating Aquaculture Systems: A Review, Aquaculture Research, 2024

Roy, S. M., Choi, H., Kim, T., Review of State-of-the-Art Improvements in Recirculating Aquaculture System: Insights into Design, Operation, and Statistical Modeling Approaches, Aquaculture, 2025, 605, 742545.

Knowler, D., Chopin, T., Espinier, R. M., Neori, A., Nobre, A., Noce, A., Reid, G., The Economics of Integrated Multi-Trophic Aquaculture: Where Are We Now and Where Do We Need to Go?, Reviews in Aquaculture, 2020, 12, 1579–1594.

Bostock, J., McAndrew, B., Richards, R., et al., Aquaculture: Global Status and Trends, Philosophical Transactions of the Royal Society B, 2010, 365, 2897–2912.

Grozea, A., Acvacultură – curs, Excelsior Art, Timișoara, 2002.

Zhu, K., Yang, X., Yang, C., Fu, T., Ma, P., Hu, W., FCFormer: Fish Density Estimation and Counting in a Recirculating Aquaculture System, Frontiers in Marine Science, 2024, 11, 1370786

Mayormente, M. D., Intelligent Recirculating Aquaculture System of Oreochromis niloticus: A Feed-Conversion-Ratio-Based Machine Learning Approach, International Journal of Intelligent Systems and Applications in Engineering, 2024, 12, 122–128.

Ramli, N. M., Verreth, J. A. J., Yusoff, F. M., Nurulhuda, K., Nagao, N., Verdegem, M. C., Integration of Algae to Improve Nitrogenous Waste Management in Recirculating Aquaculture Systems: A Review, Frontiers in Bioengineering and Biotechnology, 2020, 8, 1004

Yogev, U., Gross, A., Reducing Environmental Impact of Recirculating Aquaculture Systems by Introducing a Novel Microaerophilic Assimilation Reactor: Modeling and Proof of Concept, Journal of Cleaner Production, 2019, 226, 1042–1050

Zhou, C., Yang, X., Zhang, B., Lin, K., Xu, D., Guo, Q., Sun, C., et al., An Adaptive Image Enhancement Method for a Recirculating Aquaculture System, Scientific Reports, 2017, 7, 1, 6243

Arellano, The AI Revolution: How Artificial Intelligence Can Transform RAS Operation, RasTech, 2023. Home page address: https://www.rastechmagazine.com/the-ai-revolution/.

Badiola, Power Struggle: On Harnessing the Power of AI, RasTech, 2023. Home page address: https://www.rastechmagazine.com/powerstruggle-on-harnessing-the-power-of-ai/.

Widiasa, I. N., Susanto, H., Ting, Y. P., Suantika, G., Steven, S., Khoiruddin, K., Wenten, I. G., Membrane-Based Recirculating Aquaculture System: Opportunities and Challenges in Shrimp Farming, Aquaculture, 2023, 579, 740224,

Von Ahnen, M., Dalsgaard, J., Pedersen, P. B., Effect of Different C/N Ratios and Hydraulic Retention Times on Denitrification in Saline, Recirculating Aquaculture System Effluents, Aquacultural Engineering, 2021, 94, 102170

Wambua, D. M., Home, P. G., Raude, J. M., Ondimu, S., 2021. Environmental and energy requirements for different production biomass of Nile tilapia (Oreochromis niloticus) in recirculating aquaculture systems (RAS) in Kenya. Aquac. Fish. 6 (6), 593–600.

Xiao, R., Wei, Y., An, D., Li, D., Ta, X., Wu, Y., Ren, Q., A Review on the Research Status and Development Trend of Equipment in Water Treatment Processes of Recirculating Aquaculture Systems, Reviews in Aquaculture, 2019, 11, 3, 863–895

Zhang, S. Y., Li, G., Wu, H. B., Liu, X. G., Yao, Y. H., Tao, L., Liu, H., An Integrated Recirculating Aquaculture System (RAS) for Land-Based Fish Farming: The Effects on Water Quality and Fish Production, Aquacultural Engineering, 2011, 45, 3, 93–102

Eding, E. H., Kamstra, A., Verreth, J. A. J., Huisman, E. A., Klapwijk, A., Design and Operation of Nitrifying Trickling Filters in Recirculating Aquaculture: A Review, Aquacultural Engineering, 2006, 34, 3, 234–260

Badiola, M., Mendiola, D., Bostock, J., Recirculating Aquaculture Systems (RAS) Analysis: Main Issues on Management and Future Challenges, Aquacultural Engineering, 2012, 51, 26–35.

Bura, M., Grozea, A., Îndrumător de lucrări practice la Acvacultură, Lito USAMVB, Timișoara, 1997.

d’Orbcastel, E. R., Blancheton, J. P., Aubin, J., Towards Environmentally Sustainable Aquaculture: Comparison Between Two Trout Farming Systems Using Life Cycle Assessment, Aquacultural Engineering, 2009, 40, 3, 113–119

Barrington, K., Chopin, T., Robinson, S., Integrated Multi-Trophic Aquaculture (IMTA) in Marine Temperate Waters. In: Integrated Mariculture – A Global Review, FAO Fisheries and Aquaculture Technical Paper No. 529, FAO, Rome, 2009, pp. 7–46

Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., Fang, J., Multitrophic Integration for Sustainable Marine Aquaculture. In: Encyclopedia of Ecology, Academic Press, 2008, pp. 2463–2475

Chopin, T., Integrated Multi-Trophic Aquaculture: What It Is, and Why You Should Care, and Don’t Confuse It with Polyculture, Northern Aquaculture, 2006, August.

Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Yarish, C., Integrated Aquaculture: Rationale, Evolution, and State of the Art Emphasizing Seaweed Biofiltration in Modern Mariculture, Aquaculture, 2004, 231, 1–4, 361–391

Chopin, T., Aquaculture, Integrated Multi-Trophic (IMTA). In: Sustainable Food Production, R. A. Meyers, Ed. Springer, Dordrecht, 2013, pp. [necompletat]

Sinan, N., Bakhtiyar, A. M. Y., Andrabi, S., Mir, A. Z., Khan, N. A., Langer, S., The Evolution of Integrated Multi-Trophic Aquaculture in Context of Its Design and Components Paving Way to Valorization via Optimization and Diversification, Aquaculture, 2023, 565, 739074.

Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A. H., Kautsky, N., Yarish, C., Integrated Mariculture: Asking the Right Questions, Aquaculture, 2003, 226, 1–4, 69–90

Turlybek, N., Nurbekova, Z., Mukhamejanova, A., Baimurzina, B., Kulateyeva, M., Aubakirova, K., Alikulov, Z., Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality, Fishes, 2025, 10

Azhar, M. H., Memis, D., Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture, Aquatic Sciences and Engineering, 2023, 38, 2, 106–121

Arcade, M. C., Costache, M., Gancea, M., Nicolae, C. G., Drăguț, S. M., Increasing the Natural Productivity of Fish Ponds by Applying the IMTA Concept for Efficient Use of Natural Resources, Scientific Papers: Animal Science and Biotechnologies, 2024, 57, 1.

Sicuro, B., Castelar, B., Mugetti, D., Pastorino, P., Chiarandon, A., Menconi, V., Galloni, M., Prearo, M., Bioremediation with Freshwater Bivalves: A Sustainable Approach to Reducing the Environmental Impact of Inland Trout Farms, Journal of Environmental Management, 2020, 276, 111327.

Endut, A., Jusoh, A., Ali, N., Wan Nik, W. B., Nutrient Removal from Aquaculture Wastewater by Vegetable Production in Aquaponic Recirculation System, Desalination and Water Treatment, 2011.

Ajie, G. S., Prihatiningtyas, E., Nutrients Removal from Integrated Multi-Trophic Aquaculture (IMTA) Water Using Waste Stabilization Ponds (WSP), Proc. IOP Conference Series: Earth and Environmental Science, 2022, 976, 1, 012029

Li, Y., Qin, J., Zheng, X., Wang, Y., Production Performance of Largemouth Bass (Micropterus salmoides) and Water Quality Variation in Monoculture, Polyculture and Integrated Culture, Aquaculture Research, 2019, 50, 423–430.

Khoda Bakhsh, H., Chopin, T., Water Quality and Nutrient Aspects in Recirculating Aquaponic Production of the Freshwater Prawn (Macrobrachium rosenbergii) and the Lettuce (Lactuca sativa), International Journal of Recirculating Aquaculture, 2011, 12

Zimmermann, S., Kiessling, A., Zhang, J., The Future of Intensive Tilapia Production and the Circular Bioeconomy Without Effluents: Biofloc Technology, Recirculation Aquaculture Systems, Bio-RAS, Partitioned Aquaculture Systems and Integrated Multitrophic Aquaculture, Reviews in Aquaculture, 2023, 15, Suppl. 1, 22–31.

Granada, L., Lopes, S., Novais, S. C., Lemos, M., Modelling Integrated Multi-Trophic Aquaculture: Optimizing a Three Trophic Level System, Aquaculture, 2018, 495, 90–97.

Li, M., Callier, M. D., Blancheton, J. P., Gales, A., Nahon, S., Triplet, S., Geoffroy, T., Menniti, C., Fouilland, E., Roque d’Orbcastel, E., Bioremediation of Fishpond Effluent and Production of Microalgae for an Oyster Farm in an Innovative Recirculating Integrated Multi-Trophic Aquaculture System, Aquaculture, 2019, 504, 314–325.

Altintzoglou, T., Canavari, M., Maesano, G., Honkanen, P., Building Trust: Consumer Awareness, Acceptance and Attitudes Related to European Aquaculture and the Potential Effects of Greenwashing, Aquaculture Economics & Management, 2025.

Alexander, K. A., Freeman, S., Potts, T., Navigating Uncertain Waters: European Public Perceptions of Integrated Multi-Trophic Aquaculture (IMTA), Environmental Science & Policy, 2016, 61, 230–237.

Rusco Giusi, Roncarati Alessandra, Di Iorio Michele, Cariglia Michela, Longo Caterina, Iaffaldano Nicolaia, 2024, Can IMTA System Improve the Productivity and Quality Traits of Aquatic Organisms Produced at Different Trophic Levels? The Benefits of IMTA—Not Only for the Ecosystem, Biology 2024, 13, 946.

Checa, D., Macey, B. M., Bolton, J. J., Brink-Hull, M., O’Donohoe, P., Cardozo, A., Poersch, L. H., Sanchez, I., Circularity Assessment in Aquaculture: The Case of Integrated Multi-Trophic Aquaculture (IMTA) Systems, Fishes, 2024, 9, 165

O’Neill, E., Fehrenbach, G., Murphy, E., Alencar, S., Pogue, R., Rowan, N., Use of Next Generation Sequencing and Bioinformatics for Profiling Freshwater Eukaryotic Microalgae in a Novel Peatland Integrated Multi-Trophic Aquaculture (IMTA) System: Case Study from the Republic of Ireland, Science of the Total Environment, 2022, 851, 158392.

Edwards, P., Traditional Asian Aquaculture. In: New Technologies in Aquaculture: Improving Production, Efficiency, Quantity and Environmental Management, G. Burnell, G. Allan, Eds. Woodhead Publishing, Oxford, UK, 2009, pp. 1029–1063.

Ye, J. Y., Carp Polyculture System in China: Challenges and Future Trends. Proc. ASEM Workshop, AQUACHALLENGE, Beijing, April 27–30, 2002, in: ACP-EU Fisheries Research Report, M. Eleftheriou, A. Eleftheriou, Eds. No. 14, 2002, pp. 27–34.

Manomaitis, L., Cremer, M. C., Demonstrating the American Soybean Association Internal Marketing Program’s Aquaculture Technologies Developed in China in the Southeast Asian and Asian Subcontinent Regions Through the Soy in Aquaculture Project. Proc. Asian-Pacific Aquaculture 07, Hanoi, Vietnam, Asian Pacific Chapter, World Aquaculture Society, 2007, p. 185.

Xie, B., Qin, J., Yang, H., Wang, X., Wang, Y. H., Li, T. Y., Organic Aquaculture in China: A Review from a Global Perspective, Aquaculture, 2013, 414, 243–253.

Ibrahim, N., El Naggar, G., Water Quality, Fish Production and Economics of Nile Tilapia (Oreochromis niloticus) and African Catfish (Clarias gariepinus) Monoculture and Polycultures, Journal of the World Aquaculture Society, 2010, 41, 4

Shoko, A. P., Limbu, S. M., Mrosso, H. D. J., Mkenda, A. F., Mgaya, Z. D., Effect of Stocking Density on Growth, Production and Economic Benefits of Mixed-Sex Nile Tilapia (Oreochromis niloticus) and African Sharptooth Catfish (Clarias gariepinus) in Polyculture and Monoculture, Aquaculture Research, 2016, 47, 36–50

Mandal, J. K., et al., Cage-Pond Integration of African Catfish (Clarias gariepinus) and Nile Tilapia (Oreochromis niloticus) with Carps, Aquaculture Research, 2014, 45, 1311–1318.

Ulikowski, D., Szczepkowski, M., Szczepkowska, B., Preliminary Studies of Intensive Catfish (Silurus glanis L.) and Sturgeon (Acipenser sp.) Pond Cultivation, Archives of Polish Fisheries, 2003, 11, 2, 295–300.

Zhu, Y. J., Li, M. X., Yang, D. G., Food Preference of Paddlefish (Polyodon spathula Walbaum, 1792) in Polyculture with Bighead Carp (Aristichthys nobilis Richardson, 1845) in Non-Fed Ponds, Journal of Applied Ichthyology, 2014, 30, 1596–1601.

Grozea, A., Ciprinicultură, Mirton, Timișoara, 2007

Hossain, M. A., Little, D. C., Bhujel, R. C., Nursing Duration and Pond Fertilization Level Affect Polycultures of Indian Major Carp (Rohu Labeo rohita and Mrigal Cirrhina mrigala) with Monosex Nile Tilapia (Oreochromis niloticus), Aquaculture Research, 2003, 34, 765–775.

Szczepkowski, M., Szczepkowska, B., Effects of the Polyculture of Juvenile Stages of Northern Pike (Esox lucius L.) and Sturgeon in Recirculating Systems, Electronic Journal of Polish Agricultural Universities, 2006.

Kozłowski, M., Szczepkowski, M., Wunderlich, K., Szczepkowska, B., Piotrowska, I., Polyculture of Juvenile Pikeperch (Sander lucioperca L.) and Sterlet (Acipenser ruthenus L.) in a Recirculating System, Archives of Polish Fisheries, 2014, 22, 237–242.

Mihailov, S., Mihoc, N., Lalescu, D., Grozea, A., Polyculture of the Pikeperch (Sander lucioperca) Fingerlings into Recirculating Aquaculture System, with Sterlet (Acipenser ruthenus) or European Catfish (Silurus glanis), Research Journal of Agricultural Science, 2017, 49, 4, 193–198.

Mihailov, S., Grozea, A., Policultura unor Specii de Pești în Cadrul Sistemelor Recirculante de Acvacultură, Eurobit, Timișoara, 2021

Mihailov, S., Mihoc, N., Simiz, E., Berzava, L., Czister, L., Grozea, A., The Polyculture of Sterlet (Acipenser ruthenus) and Carp (Cyprinus carpio) in Recirculating Aquaculture Systems: The Effects on Fish Growth Dynamic and Production, Scientific Papers: Animal Science and Biotechnologies, 2020, 53, 2.

Muscalu, R., Muscalu, C., Nagy, M., Bura, M., Szelei, Z. T., Studies on Wels Catfish (Silurus glanis) Development During Cold Season as an Auxiliary Species in Sturgeon Recirculated Aquaculture Systems, AACL Bioflux, 2010, 3, 5.

Mihoc, N., Mihailov, S., Lalescu, D., Grozea, A., Study on the Effects of Polyculture of the Sterlet (Acipenser ruthenus) Fingerlings and European Catfish (Silurus glanis) on Bioproductive Performances of These Species in Recirculating Aquaculture Systems, Scientific Papers: Animal Science and Biotechnologies, 2021, 54, 1.

Pantanella, E., Pond Aquaponics: New Pathways to Sustainable Integrated Aquaculture and Agriculture, Aquaculture News, 2008, May.

Malcolm, J., What Is Aquaponics?, Backyard Aquaponics, 2007, 1, Summer.

Goddek, S., Joyce, A., Kotzen, B., Burnell, G. M., Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future, Springer, Cham, Switzerland, 2019

Turkmen, G., Güner, Y., Aquaponic (Integrating Fish and Plant Culture) Systems. In: Science Book – International Symposium on Sustainable Development, Wiley, London, UK, 2000, pp. 657–666.

Colt, J., Schuur, A. M., Weaver, D., Semmens, K., Engineering Design of Aquaponics Systems, Reviews in Fisheries Science & Aquaculture, 2022, 30, 33–80.

Hutchinson, W., Jeffrey, M., O’Sullivan, D., Casement, D., Clarke, S., Recirculating Aquaculture Systems: Minimum Standards for Design, Construction and Management, Inland Aquaculture Association of South Australia Inc., 2004.

Jensen, M. H., Hydroponics, HortScience, 1997, 32, 6, 1018–1021.

Duong, T. N., Nguyen, H. N., Dang, T. T. T., A Novel In Vitro Hydroponic Culture System for Potato (Solanum tuberosum L.) Microtuber Production, 2006.

Blidariu, F., Grozea, A., Increasing the Economic Efficiency and Sustainability of Indoor Fish Farming by Means of Aquaponics – Review, Scientific Papers: Animal Science and Biotechnologies, 2011, 44, 2.

Lama, S. L., Marcelino, K. R., Wongkiew, S., Surendra, K. C., Hu, Z., Lee, J. W., Khanal, S. K., Recent Advances in Aquaponic Systems: A Critical Review, Reviews in Aquaculture, 2025, 17, e70029.

Filep, R. M., Diaconescu, S., Marin, M., Bădulescu, L., Nicolae, C. G., Case Study on Water Quality Control in an Aquaponic System, Current Trends in Natural Sciences, 2016a, 5, 9, 6–9.

Filep, R. M., Diaconescu, S., Costache, M., Stavrescu-Bedivan, M. M., Bădulescu, L., Nicolae, C. G., Pilot Aquaponic Growing System of Carp (Cyprinus carpio) and Basil (Ocimum basilicum), Agriculture and Agricultural Science Procedia, 2016b, 10, 255–260.

Khoda, B. H., Chopin, T., A Variation on the IMTA Theme: A Land-Based, Closed-Containment Freshwater IMTA System for Tilapia and Lettuce. Proc. Aquaculture CanadaOM 2012, 2012

Jones, J., Shaw, C., Chen, T. W., Stass, M. C., Urlichs, C., Riewe, D., Kloas, W., Geilfus, C. M., Plant Nutritional Value of Aquaculture Water Produced by Feeding Nile Tilapia (Oreochromis niloticus) Alternative Protein Diets: A Lettuce and Basil Case Study, Plants People Planet, 2023, 1–19.

Chopin, T., Murray, S., Khoda, B. H., Developing Integrated Multi-Trophic Aquaculture Systems for Commercial Salmon Hatcheries, Hatchery International, 2016, January/February, pp. 31.

Vergote, N., Vermeulen, J., Recirculation Aquaculture System (RAS) with Tilapia in a Hydroponic System with Tomatoes. Proc. XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Greenhouse 2010 and Soilless Cultivation, 2012.

Blidariu, F., Radulov, I., Lalescu, D., Drasovean, A., Grozea, A., Evaluation of Nitrate Level in Green Lettuce Conventionally Grown under Natural Conditions and Aquaponic System, Scientific Papers: Animal Science and Biotechnologies, 2013, 46, 1.

Limbu, S. M., Shoko, A. P., Lamtane, H. A., et al., Fish Polyculture System Integrated with Vegetable Farming Improves Yield and Economic Benefits of Small-Scale Farmers, Aquaculture Research, 2017, 48, 3631–3644.

Rothuis, A. J., Duong, L. T., Richter, C. J. J., Ollevier, F., Polyculture of Silver Barb (Puntius gonionotus Bleeker), Nile Tilapia (Oreochromis niloticus L.) and Common Carp (Cyprinus carpio L.) in Vietnamese Ricefields: Feeding Ecology and Impact on Rice and Ricefields Environment, Aquaculture Research, 1998, 29, 649–660.

Chopin, T., Murray, S., Bakhsh, H. K., Freshwater IMTA, Hatchery International: Recirc in Action, 2016, 31, 1–3

David, F. S., Proenca, D. C., Valenti, W. C., Phosphorus budget in integrated multitrophic aquaculture systems with Nile tilapia, Oreochromis niloticus, Amazon river prawn, Macrobrachium amazonicum, Journal of the World Aquaculture Society, 2017, 48(3), 402–414

Flickinger, D. L., Dantas, D. P., Proenca, D. C., David, F. S., Valenti, W. C., Phosphorus in the culture of the Amazon river prawn (Macrobrachium amazonicum) and tambaqui (Colossoma macropomum) farmed in monoculture and in integrated multitrophic systems, Journal of the World Aquaculture Society, 2019a, 1–22

Flickinger, D. L., Costa, G. A., Dantas, D. P., Proenca, D. C., David, F. S., Durborow, R. M., Valenti, W. C., The budget of carbon in the farming of the Amazon river prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems, Aquaculture Reports, 2020, 17, 100340

Flickinger, D. L., Costa, G. A., Dantas, D. P., Moraes-Valenti, P., Valenti, W. C., The budget of nitrogen in the grow-out of the Amazon river prawn (Macrobrachium amazonicum Heller) and tambaqui (Colossoma macropomum Cuvier) farmed in monoculture and in integrated multitrophic aquaculture systems, Aquaculture Research, 2019b, 50, 3444–3461.

Roessler Tanja Yvonne, Wirtz Andrea, Slater Matthew James, Hanjes Joachim, 2019, Growth performance and RNA/DNA ratio of noble crayfish (Astacus astacus) and narrow-clawed crayfish (Pontastacus leptodactylus) fed fish waste diets, Aquaculture Research. 2020, 51, 3205–3215

Azhar, M., Suciyono, S., Budi, D., Ulkhaq, M., Anugrahwati, M., Ekasari, D., Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon–nitrogen ratios, Aquaculture International, 2020, 28, 1293–1304

Hisano, H., Barbosa, P., Hayd, L., Mattioli, C., Evaluation of Nile tilapia in monoculture and polyculture with giant freshwater prawn in biofloc technology system and in recirculation aquaculture system, International Aquatic Research, 2019

Uddin, M. S., Milstein, A., Azim, M. E., Wahab, M. A., Verdegem, M., Verreth, J., Effects of stocking density, periphyton substrate and supplemental feed on biological processes affecting water quality in earthen tilapia–prawn polyculture ponds, Aquaculture Research, 2008, 39, 1243–1257

Mohanty, R. K., Effects of feed restriction on compensatory growth performance of Indian major carps in a carp–prawn polyculture system: a response to growth depression, Aquaculture Nutrition, 2015, 21, 464–473

Mohanty, R. K., Mishra, A., Panda, D. K., Pail, D. U., Water budgeting in a carp–prawn polyculture system: impacts on production performance, water productivity and sediment stack, Aquaculture Research, 2015, 47, 2050–2060

Akowanou, A. V. O., Deguenon, H. E. J., Balogoun, K. C., Daouda, M. M. A., Aina, M. P., The combined effect of three floating macrophytes in domestic wastewater treatment, Scientific African, 2023, 20, e01630

Ajithram, A., Winowlin Jappes, J. T., Siva, I., Brintha, N. C., Utilizing the aquatic waste and investigation on water hyacinth (Eichhornia crassipes) natural plant into the fibre composite: waste recycling, Materials Today: Proceedings, 2022, 58, 953–958

Sace, C. F., Fitzsimmons, K. M., Vegetable production in a recirculating aquaponic system using Nile tilapia (Oreochromis niloticus) with and without freshwater prawn (Macrobrachium rosenbergii), Academia Journal of Agricultural Research, 2013, 1(12), 236–250

Granada, L., Sousa, N., Lopes, S., Lemos, M., Is integrated multitrophic aquaculture the solution to the sector’s major challenges? – a review, Reviews in Aquaculture, 2016, 8, 283–300

Arcade, M. C., Costache, M., Gancea, M., Radu, D., Costache, M., Nicolae, C. G., Integrating freshwater swan mussel (Anodonta cygnea) in polyculture with fish: establishing a controlled zone within the lower section of a fish cage farm, Scientific Papers. Series D. Animal Science, 2024, 67(2)

Soto, D., Mena, G., Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication, Aquaculture, 1999, 171, 65–81.

Goda, A. M. A. S., Aboseif, A. M., Taha, M. K. S., Mohammady, E. Y., Aboushabana, N. M., Nazmi, H. M., Zaher, M. M., Aly, H. A., El-Okaby, M. A. S., Otazua, N. I., Ashour, M., Optimizing nutrient utilization, hydraulic loading rate, and feed conversion ratios through freshwater IMTA-aquaponic and hydroponic systems as an environmentally sustainable aquaculture concept, Scientific Reports, 2024, 14, 14878.

Downloads

Published

2025-11-03