Cutting-Edge Biomaterials in Dentistry: A Biotechnological Perspective
Keywords:
biomaterials, biotechnology, dentistryAbstract
Biotechnology has significantly advanced the field of dentistry, offering innovative biomaterials that enhance dental treatments and improve patient outcomes. One notable advancement is the use of hydroxyapatite and bioactive glass, which mimic the natural mineral components of teeth and bones, promoting better integration with the body's tissues. These materials are commonly used in bone grafts, dental implants, and coatings for implants, providing a foundation for successful dental restorations. Tissue engineering has also made significant strides with the development of collagen-based and polycaprolactone (PCL) scaffolds. These scaffolds support the growth and regeneration of dental tissues, facilitating the repair of periodontal structures and aiding in dental pulp regeneration. Stem cell therapy, leveraging dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs), further enhances regenerative dentistry by enabling the growth of new dental tissues, potentially leading to whole-tooth regeneration in the future. Biotechnologically derived growth factors and biologics, such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and bone morphogenetic proteins (BMPs), are being incorporated into dental treatments to accelerate healing and promote bone growth. Additionally, antimicrobial peptides and proteins, like lysozyme and lactoferrin, are integrated into dental materials to reduce infection risks and improve the longevity of dental restorations. Furthermore, biodegradable and smart materials, including chitosan and responsive polymers, are being developed for controlled drug delivery and enhanced wound healing in dental applications. Genetically engineered proteins, such as recombinant human collagen and amelogenin, also make headway in tissue regeneration and enamel repair. Overall, biotechnology is revolutionizing dentistry, providing more effective, biocompatible, and patient-specific treatment options that significantly enhance the quality of dental care.
References
Wang, X., Li, H., Mu, M., Ye, R., Zhou, L., Guo, G. Recent Development and Advances on Polysaccharide Composite Scaffolds for Dental and Dentoalveolar Tissue Regeneration. Polymer Reviews, 2024, 65(1), 47–103. https://doi.org/10.1080/15583724.2024.2401992
Hench LL. The story of Bioglass®. Journal of Materials Science: Materials in Medicine. 2006;17(11):967–978. doi:10.1007/s10856-006-0432-z
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.017
Sharifianjazi F, Sharifianjazi M, Irandoost M, Tavamaishvili K, Mohabatkhah M, Montazerian M. Advances in Zinc-Containing Bioactive Glasses: A Comprehensive Review. Journal of Functional Biomaterials. 2024;15(9):258. doi:10.3390/jfb15090258
Meskher H, Sharifianjazi F, Tavamaishvili K, Irandoost M, Nejadkoorki D, Makvandi P. Limitations, challenges and prospective solutions for bioactive glasses-based nanocomposites for dental applications: A critical review. Ceramics International. 2024;50(2):1801–1820. doi:10.1016/j.ceramint.2023.09.058
Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomaterialia. 2010;6(8):2863–2873. doi:10.1016/j.actbio.2010.02.017
Liang J, Cao C, Zhao Y, Dong S, Yao C, Liu X. Collagen-based biomaterials for dental tissue engineering applications: A review. Biomedical Materials. 2021;16(4):042004. doi:10.1088/1748-605X/ac05b5
Costa PF, Dias AF, Marques AP, Reis RL, Oliveira JM. Polycaprolactone scaffolds for dental tissue engineering applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2023;111(2):355–369. doi:10.1002/jbm.b.35178
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(25):13625–13630. doi:10.1073/pnas.240309797
Kim, D.; Kim, S.G. Cell Homing Strategies in Regenerative Endodontic Therapy. Cells 2025, 14, 201. https://doi.org/10.3390/cells14030201
Kim SG, Zheng Y, Zhou J, Chen M, Embree MC, Song K, Mao JJ. Dentin and pulp regeneration by the transplantation of dental pulp stem cells in 3D-printed hydrogels. Stem Cells Translational Medicine. 2020;9(11):1360–1376. doi:10.1002/sctm.19-0486
Chen FM, Sun HH, Lu H, Yu Q, Meng FP, Zhang J, Yu XB, Zhang D, Hou BJ, Wu ZF, Jin Y. Periodontal tissue regeneration using stem cell-based tissue engineering strategies. Journal of Dental Research. 2018;97(10):1225–1233, doi:10.1177/0022034518772905
Yu X, Ge S, Chen S, Xu Q, Zhang J, Guo H, Wang H, Feng Y, Ling J. Human periodontal ligament stem cell-derived exosomes promote bone regeneration by enhancing angiogenesis and osteogenesis in vivo. Journal of Cellular and Molecular Medicine. 2021;25(2):860–872. doi:10.1111/jcmm.16180
*** Implant & Perio Center of Kansas, PRP and PRF Treatments Prove to be Highly Beneficial in the Dental Industry, February 21, 2025, Periodontics.
Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Frontiers in Oral Health.2023;4:1128391. oi:10.3389/froh.2023.1128391
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, et al. Smart dental materials for antimicrobial applications. Bioactive Materials. 2023 June 1;24:1–19.
Wikesjö UME, Reddy MS, Livingston HM, Thacker R, Bhola M, Cho MI, Kim CK, Lee JS, Bogle GC, Haese L, Sorensen RG, Wozney JM. Recombinant human bone morphogenetic protein-2 promotes bone formation and osseointegration of dental implants. Clinical Oral Implants Research. 2008;19(10):1027–1036. doi:10.1111/j.1600-0501.2008.01566.x
Green DW, Qureshi A, Lee JH, Jung HS. Natural antimicrobial peptides in dentistry: A review. Dental Materials. 2021;37(2):345–356. doi:10.1016/j.dental.2020.11.010
Li J, Wu Y, Qiao Z, Zhu J, Wang D, Liu S. Chitosan-based biomaterials for oral tissue engineering: A review. Carbohydrate Polymers. 2022;287:119312. doi:10.1016/j.carbpol.2022.119312
Arakawa H, Takahashi Y, Watanabe M, Aoki S, Kishimoto N, Hirata H. Smart biomaterials for dental drug delivery systems. Advanced Drug Delivery Reviews. 2020;159:69–85. doi:10.1016/j.addr.2020.09.007
Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JC. Regulation of dental enamel shape and hardness. Journal of Dental Research. 2010;89(10):1024–1038. doi:10.1177/0022034510375829
Pandya M, Li N, Madhav S, Singh B, Lee H, Wang S, Guo J, Zhang Y, Chu CH. Recombinant amelogenin in regenerative dentistry: Mechanisms and clinical outcomes. Frontiers in Bioengineering and Biotechnology. 2023;11:1204523. doi:10.3389/fbioe.2023.1204523
Zhang L, Yu J, Wang Y, Luo X, Hu J, Li Y, Huang L, Wang C, Zhang L. Nanostructured hydroxyapatite coatings for dental implants: Surface chemistry, mechanical performance, and biological response. Acta Biomaterialia. 2022;134:136–149. doi:10.1016/j.actbio.2021.12.037
Avila-Ortiz G, Wang HL, Misch CE, Dawson DV. Bone grafting techniques for horizontal ridge augmentation: A systematic review. International Journal of Oral and Maxillofacial Implants. 2014;29(Suppl):81–105. doi:10.11607/jomi.3600.
