Biomedical Products and the Importance of Research in Biotechnology
Keywords:
biomedical products, orthopaedic prosthesis, biomaterials.Abstract
Biomedical products, such as orthopaedic prostheses/implants, represent one of the most innovative outcomes of biotechnology research, combining engineering, material science, and biological knowledge to improve patients’ quality of life. This paper aims to highlight the importance of research in the development of biomedical devices, with a particular emphasis on orthopaedic implants. Advances in biomaterials, surface functionalization, and tissue integration underscore the crucial role of biotechnology in developing safe, durable, and biocompatible products. The discussion also focuses on how ongoing research is vital for addressing challenges such as infection resistance, mechanical durability, and patient-specific customization, highlighting examples from Stryker – a global leader in medical device manufacturing.
References
* * WHO, Global Burden of Disease Study, World Health Organization Report, 2019.
Liu, X., Chu, P.K., Ding, C., Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering: R, 2004, 47, 49–121.
Le Guéhennec, L., Soueidan, A., Layrolle, P., Amouriq, Y., Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials, 2007, 23, 844–854.
Bartolo, P.J., Kruth, J.P., Silva, J., Levy, G., Malshe, A., Rajurkar, K., Leu, M., Biomedical production of implants by additive manufacturing, CIRP Annals, 2012, 61(2), 635–655.
Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. Biotechnol Adv. 2020;42:107579.
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.
Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K., Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science, 2009, 54, 397–425.
Mutlu N, Kurtuldu F, Nowicka A, Liverani L, Galusek D, Boccaccini AR. Morphology and topography of chitosan-Zn complex/PEO fiber mats influence cell viability and attachment. International Journal of Biological Macromolecules. 2025 Jun 1;311:143394.
Zhao R, Guo S, Zhang F, Zhang W, Yang D, Yue X, et al. Enhanced energy absorption and low anisotropy of additively manufactured porous Ti-6Al-4V alloy with disordered trapezo-rhombic dodecahedron structures. Additive Manufacturing. 2024 Sep 5;95:104557.
Gao TJ, Lindholm TS, Kommonen B, Ragni P, Paronzini A, Lindholm TC. Microscopic evaluation of bone-implant contact between hydroxyapatite, bioactive glass and tricalcium phosphate implanted in sheep diaphyseal defects. Biomaterials. 1995 Oct 1;16(15):1175–9.
Makkar P, Kang HJ, Padalhin AR, Faruq O, Lee B. In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications. Applied Surface Science. 2020 Apr 30;510:145333.
Błoniarz A, Marchewka J, Sitarz M, Drożdż K, Gosiewski T, Brzychczy-Włoch M, et al. Effect of adding selected carboxylic acids to the solution on electrophoretic deposition, adhesion strength, morphology and antibacterial properties of chitosan coatings on titanium. Progress in Organic Coatings. 2024 Apr 1;189:108258.
Dada M, Popoola P. Chapter 12 - The design of hybrid polymeric materials for tissue engineering: 3D bioprinting, polymeric protheses, smart polymers, and shape memory polymeric biomaterials. In: Sadiku ER, Aderibigbe BA, editors. Hybrid Polymeric Systems for Biomedical Applications [Internet]. Woodhead Publishing; 2025. p. 499–528.
Tande, A.J., Patel, R., Prosthetic joint infection, Clinical Microbiology Reviews, 2014, 27(2), 302–345.
von Witzleben M, Liu S, Sembdner P, Holtzhausen S, Blum SFU, Lützner J, et al. Additive manufacturing of patient-specific, biphasic implants with zonal design for regeneration of osteochondral defects–critical evaluation of the work flow from clinical MRI data to implantation. Materials Today Bio. 2025 Jun 1;32:101858.
Simcox T, Tarazona D, Becker J, Ayres E, Gould J. Improved Implant Positioning of Cephalomedullary Nail for Trochanteric Fractures Using the Stryker ADAPT Navigation System. Injury. 2021 Nov 1;52(11):3404–7.
Filardi V. Biomechanical behavior of fibula fracture fixation using the Stryker VariAx 2 system: A finite element analysis of lower limb load distribution. Journal of Orthopaedics. 2025 Nov 1;69:53–60.
Ajji Z, Jafari A, Mousavi A, Ajji A, Heuzey MC, Savoji H. 3D bioprinting of thick core–shell vascularized scaffolds for potential tissue engineering applications. European Polymer Journal. 2025 Jan 6;222:113564.
Bordure P, Hubert L, Marc C, Rony L. La conservation des implants ostéo-intégrés lors de la prise en charge chirurgicale des infections chroniques de prothèses totales d’épaule inversées (PTEI) influence-t-elle les résultats fonctionnels sans affecter l’efficacité du traitement de l’infection ? Revue de Chirurgie Orthopédique et Traumatologique. 2021 Jun 1;107(4):430–5.
Barthel A, Boyer P, Jenny J, Gaudias J, Boeri C, Niglis L, et al. Apport de la sonication des implants au diagnostic microbiologique des infections chroniques de prothèse articulaire de hanche et de genou. Médecine et Maladies Infectieuses Formation. 2024 Jun 1;3(2, Supplement):S27–8.
Dumaine V. Complications mécaniques des prothèses massives du fémur distal. Revue de Chirurgie Orthopédique et Traumatologique. 2025.08.18; https://www.sciencedirect.com/science/article/pii/S1877051725001704
Abbas B, Weng HC, Syed J, Gosvami NN, Huang EW, Mishra S, et al. Development of tribo-efficient novel nanostructured silica coatings on additively manufactured Ti-6Al-4V via PMMA degradation. Tribology International. 2025 Dec 1;212:110962.
Liu B, Li Y, Chen H, Li S, Dan X, Xue P, et al. From molecular mechanisms to clinical translation: Silk fibroin-based biomaterials for next-generation wound healing. International Journal of Biological Macromolecules. 2025 Jun 1;313:144266.
Khadeeja Thanha KP, Ayisha Sana P, Ajesh JS, Naseef PP, Tharayil H, Lubaib P, et al. Advanced smart bioelectronics for wound healing: biosensing, drug delivery, and artificial intelligence. International Journal of Pharmaceutics. 2025 Nov 10; 684: 126098
Kadhim TR, Oleiwi JK, Hamad QA. Improving the biological properties of UHMWPE biocomposite for orthopedic applications. Int J Biomaterials. 2023;2023:4219841.
Yang X, Yin X, He Y, Cheng J, Li X, Chen G, et al. Selective laser melted Fe–30Mn–6Cu alloy: A multifunctional candidate for MRI-compatible, biodegradable, antibacterial, and biocompatible orthopedic implants. AccScience (Open Access). 2025.
Lee CY, Kung PC, Huang CC, Shih SJ, Huang EW, Chen SY, et al. In vivo study of bone growth around additively manufactured implants with Ti-6Al-4V and bioactive glass powder composites. arXiv. 2025 Jan;2501.11098.
