Meat Packaging: A Determinant of Product Quality and Shelf Life

Authors

  • Antoneta-Elena Sima University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, Bucharest, Romania
  • Alexandru-Ionut Ștefan University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, Bucharest, Romania
  • Ioana-Alexandra Alexe University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, Bucharest, Romania
  • Elena-Narcisa Pogurschi University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, Bucharest, Romania

Keywords:

meat packaging, food safety, biotechnology, modified atmosphere packaging (MAP), food waste, active packaging

Abstract

Packaging technologies play a central role in preserving meat quality, ensuring food safety, and promoting sustainability in the food industry. As consumer preferences increasingly favor minimally processed, high-quality, and eco-friendly products, packaging has evolved beyond its traditional role of containment and protection. Modern solutions such as modified atmosphere packaging (MAP), vacuum sealing, and biotechnology-based active and intelligent systems contribute significantly to extending shelf life and maintaining the physicochemical and microbiological stability of meat products throughout distribution and storage. This paper explores the intersection of biotechnology and packaging innovation, with a focus on sustainable materials and smart technologies that respond to both product conditions and environmental requirements. The use of biodegradable materials, sensors, and antimicrobial components is gaining traction as a way to meet sustainability goals while ensuring food safety and reducing waste. The integration of biotechnological advances into packaging systems has the potential to reshape meat preservation strategies, making them more efficient, transparent, and environmentally responsible

References

Schaefer, D., & Cheung, W. M. (2018). Smart packaging: Opportunities and challenges. Procedia CIRP, 72, 1146–1151. https://doi.org/10.1016/j.procir.2018.03.240

Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M. D. C., Nilsen-Nygaard, J., Pettersen, M. K., & Freire, C. S. R. (2018). A concise guide to active agents for active food packaging. Trends in Food Science & Technology, 81, 85–101. https://doi.org/10.1016/j.tifs.2018.08.006

Erarslan, A., & Yuka, S. A. (2024). Exploring ethyl pyruvate as an antifungal and antibacterial agent for food preservation: An in vitro and in silico study. International Journal of Food Science and Technology, 59(9), 6580–6589. https://doi.org/10.1111/ijfs.17410

Yan, M. R., Hsieh, S., & Ricacho, N. (2022). Innovative food packaging, food quality and safety, and consumer perspectives. Processes, 10(4), 747. https://doi.org/10.3390/pr10040747

European Commission. (2012). Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Official Journal of the European Union, L 167, 1–123.

Marsh, K., & Bugusu, B. (2007). Food packaging—Roles, materials, and environmental issues. Journal of Food Science, 72(3), R39–R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x

Petcu, C. D., Tăpăloagă, D., Mihai, O. D., Gheorghe-Irimia, R. A., Negoiță, C., Georgescu, I. M., Tăpăloagă, P. R., Borda, C., & Ghimpețeanu, O. M. (2023). Harnessing natural antioxidants for enhancing food shelf life: Exploring sources and applications in the food industry. Foods, 12(17), 3176. https://doi.org/10.3390/foods12173176

Ianitchi, D., Posan, P., Malos, I. G., Nistor, L., Maftei, M. L., Nicolae, C. G., Toma (Enache), I. F., & Hodosan, C. (2024). Effects of meat consumption on consumers’ health. Scientific Papers. Series D. Animal Science, 67(1), 465–480.

Hodosan, C., Nistor, L., Suler, A., Barbuica, S. I., Hodosan, R. I., & Negulei, A. M. (2023). Research on the physico-chemical and microbiological quality of fast food products. Scientific Papers. Series D. Animal Science, 66(1), 399–404.

Ventanas, S., Estevez, M., Tejeda, J. F., & Ruiz, J. (2006). Protein and lipid oxidation in Longissimus dorsi and dry cured loin from Iberian pigs as affected by crossbreeding and diet. Meat Science, 72(1), 37–44. https://doi.org/10.1016/j.meatsci.2005.09.011

Han, J. H. (2005). New technologies in food packaging: Overview. În Innovations in food packaging (pp. 3–11). Elsevier. https://doi.org/10.1016/B978-012311632-1/50033-4

Grobbel, J. P., Dikeman, M. E., Hunt, M. C., & Milliken, G. A. (2008). Effects of packaging atmospheres on beef instrumental tenderness, fresh color stability, and internal cooked color. Journal of Animal Science, 86(5), 1191–1199. https://doi.org/10.2527/jas.2007-0479

Verbeke, W., De Smet, S., Vackier, I., Van Oeckel, M. J., Warnants, N., & Van Kenhove, P. (2005). Role of intrinsic search cues in the formation of consumer preferences and choice for pork chops. Meat Science, 69(3), 343–354. https://doi.org/10.1016/j.meatsci.2004.08.005

Renerre, M., & Labadie, J. (1993). Fresh red meat packaging and meat quality. În Proceedings of the 39th International Congress of Meat Science and Technology (pp. 361–387). Calgary, Alberta, Canada.

Zhao, Y., Wells, J. H., & McMillin, K. W. (1994). Applications of dynamic modified atmosphere packaging systems for fresh red meats: Review. Journal of Muscle Foods, 5(4), 299–325. https://doi.org/10.1111/j.1745-4573.1994.tb00538.x

Singh, R. K., & Singh, N. (2005). Quality of packaged foods. În Innovations in food packaging (pp. 19–34). Elsevier. https://doi.org/10.1016/B978-012311632-1/50035-8

Lindh, H., Williams, H., Olsson, A., & Wikström, F. (2016). Elucidating the indirect contributions of packaging to sustainable development: A terminology of packaging functions and features. Packaging Technology and Science, 29(4–5), 225–246. https://doi.org/10.1002/pts.2197

Opara, U. L., Caleb, O. J., & Belay, Z. A. (2020). Modified atmosphere packaging for food preservation. În Postharvest handling and storage of perishable crops (pp. 125–145). Elsevier. https://doi.org/10.1016/B978-0-12-817190-5.00007-0

McMillin, K. W. (2017). Advancements in meat packaging. Meat Science, 132, 153–162. https://doi.org/10.1016/j.meatsci.2017.04.015

Jeong, J. Y., & Claus, J. R. (2010). Color stability and reversion in carbon monoxide packaged ground beef. Meat Science, 85(3), 525–530. http://dx.doi.org/10.1016/j.meatsci.2010.02.027

McKee, L. (2007). Microbiological and sensory properties of fresh and frozen poultry. În Nollet, L. M. L. (Ed.), Handbook of meat, poultry and seafood quality (pp. 487–498). Blackwell Publishing. https://doi.org/10.1002/9780470277829.ch38

Saucier, L., Gendron, C., & Gariépy, C. (2000). Shelf life of ground poultry meat stored under modified atmosphere. Poultry Science, 79(12), 1851–1856. https://doi.org/10.1093/ps/79.12.1851

Mastromatteo, M., Conte, A., & Del Nobile, M. A. (2010). Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Engineering Reviews, 2(1), 28–38. https://doi.org/10.1007/s12393-010-9013-5

Mullan, M., & Michael, M. (2003). Modified atmosphere packaging. În Coles, R., McDowell, D., & Kirwan, M. J. (Eds.), Food packaging technology (pp. 303–331). CRC Press.

Giménez, B., Roncalés, P., & Beltrán, J. A. (2004). The effects of natural antioxidants and lighting conditions on the quality characteristics of gilt-head sea bream fillets (Sparus aurata) packaged in a modified atmosphere. Journal of the Science of Food and Agriculture, 84(9), 1053–1060. https://doi.org/10.1002/jsfa.1785

Kropf, D. H. (2004). Packaging | Vacuum. În Encyclopedia of Meat Sciences (pp. 955–962). Elsevier. https://doi.org/10.1016/B0-12-464970-X/00139-2

Bell, R. G. (2001). Meat packaging: Protection, preservation, and presentation. În Hui, Y. H., Nip, W. K., Rogers, R. W., & Young, O. A. (Eds.), Meat science and applications (pp. 463–490). Marcel Dekker.

Borch, E., Kant-Muermans, M.-L., & Blixt, Y. (1996). Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology, 33(1), 103–120. https://doi.org/10.1016/0168-1605(96)01135-X

Darabă, A. (2003). Influence of vacuum packaging on the non-specific spoilage microbiota of refrigerated meat. AGIR Bulletin, 3 (July–September).

Firouz, M. S., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113. https://doi.org/10.1016/j.foodres.2021.110113

Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: Legal aspects and safety concerns. Trends in Food Science & Technology, 19(Supplement 1), S103–S112. https://doi.org/10.1016/j.tifs.2008.09.011

Yildirim, S., & Röcker, B. (2018). Active packaging. În Nanomaterials for food packaging: Materials, processing technologies, and safety issues (pp. 173–202). Elsevier. https://doi.org/10.1016/B978-0-323-51271-8.00007-3

Kuswandi, B., & Jumina. (2020). Active and intelligent packaging, safety, and quality controls. În Fresh-cut fruits and vegetables: Technologies and mechanisms for safety control (pp. 243–294). Elsevier. https://doi.org/10.1016/B978-0-12-816184-5.00012-4

Yu, J., Ruengkajorn, K., Crivoi, D. G., et al. (2019). High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 10, 2398. https://doi.org/10.1038/s41467-019-10362-2

Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404–419. https://doi.org/10.1016/j.meatsci.2014.06.031

Rehman, A., Jafari, S. M., Aadil, R. M., Assadpour, E., Randhawa, M. A., & Mahmood, S. (2020). Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science & Technology, 101, 106–121. https://doi.org/10.1016/j.tifs.2020.05.001

Kraśniewska, K., Galus, S., & Gniewosz, M. (2020). Biopolymers-based materials containing silver nanoparticles as active packaging for food applications – A review. International Journal of Molecular Sciences, 21(3), 698. https://doi.org/10.3390/ijms21030698

Stoleru, E., Irimia, A., & Butnaru, E. (2021). Bio-based bioplastics in active food packaging. În M. Kuddus & Roohi (Eds.), Bioplastics for sustainable development (pp. 347–379). Springer. https://doi.org/10.1007/978-981-16-1823-9_14

Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10–11), 1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

Debeaufort, F., Quezada-Gallo, J.-A., & Voilley, A. (1998). Edible films and coatings: Tomorrow’s packagings – A review. Critical Reviews in Food Science and Nutrition, 38, 299–313. https://doi.org/10.1080/10408699891274219

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303. https://doi.org/10.1016/j.tifs.2011.02.004

Guimarães, A., Abrunhosa, L., Pastrana, L. M., & Cerqueira, M. A. (2018). Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Comprehensive Reviews in Food Science and Food Safety, 17(3), 594–614. https://doi.org/10.1111/1541-4337.12345

Salvia-Trujillo, L., Soliva-Fortuny, R., Rojas-Graü, M. A., McClements, D. J., & Martín-Belloso, O. (2017). Edible nanoemulsions as carriers of active ingredients: A review. Annual Review of Food Science and Technology, 8, 439–466. https://doi.org/10.1146/annurev-food-030216-025908

Sánchez Aldana, D., Contreras-Esquivel, J. C., Nevárez-Moorillón, G. V., & Aguilar, C. N. (2015). Caracterización de películas comestibles a base de extractos pécticos y aceite esencial de limón Mexicano. CYTA – Journal of Food, 13(1), 17–25. https://doi.org/10.1080/19476337.2014.904929

Kalpana, S., Priyadarshini, S. R., Leena, M. M., Moise, J. A., & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145–157. https://doi.org/10.1016/j.tifs.2019.09.008

Caldeira, C., De Laurentiis, V., Corrado, S., van Holsteijn, F., & Sala, S. (2019). Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Resources, Conservation and Recycling, 149, 479–488. https://doi.org/10.1016/j.resconrec.2019.06.011

European Commission. (2017). Food waste: The problem in the EU in numbers. Retrieved April 10, 2025, from https://www.europarl.europa.eu/news/en/headlines/society/20170505STO73528/food-waste-the-problem-in-the-eu-in-numbers-infographic

Stenmarck, Å., Jensen, C., Quested, T., & Moates, G. (2016). Estimates of European food waste levels. https://doi.org/10.13140/RG.2.1.4658.4721

Brancoli, P., Rousta, K., & Bolton, K. (2017). Life cycle assessment of supermarket food waste. Resources, Conservation and Recycling, 118, 39–46. https://doi.org/10.1016/j.resconrec.2016.11.024

Cicatiello, C., Franco, S., Pancino, B., Blasi, E., & Falasconi, L. (2017). The dark side of retail food waste: Evidences from in-store data. Resources, Conservation and Recycling, 125, 273–281. https://doi.org/10.1016/j.resconrec.2017.06.010

Mattsson, L., Williams, H., & Berghel, J. (2018). Waste of fresh fruit and vegetables at retailers in Sweden – Measuring and calculation of mass, economic cost and climate impact. Resources, Conservation and Recycling, 130, 118–126. https://doi.org/10.1016/j.resconrec.2017.10.037

Scholz, K., Eriksson, M., & Strid, I. (2015). Carbon footprint of supermarket food waste. Resources, Conservation and Recycling, 94, 56–65. https://doi.org/10.1016/j.resconrec.2014.11.016

Downloads

Published

2025-06-06