Advanced and Relevant Methods for the Determination of Mycotoxins in Food and Feed

Authors

  • Ioana Porosnicu Iasi University of Life Sciences, 700490, Mihail Sadoveanu Alley, no.3, Romania
  • Luminiţa-Iuliana Ailincai Iasi University of Life Sciences, 700490, Mihail Sadoveanu Alley, no.3, Romania
  • Andra-Sabina Neculai-Valeanu Research and Development Station for Cattle Breeding, 707252, Iasi-Ungheni no.9, Dancu, Iasi
  • Adina-Mirela Ariton Research and Development Station for Cattle Breeding, 707252, Iasi-Ungheni no.9, Dancu, Iasi
  • Madalina Davidescu Iasi University of Life Sciences, 700490, Mihail Sadoveanu Alley, no.3, Romania
  • Bianca-Maria Madescu Iasi University of Life Sciences, 700490, Mihail Sadoveanu Alley, no.3, Romania
  • Mihai Mares Iasi University of Life Sciences, 700490, Mihail Sadoveanu Alley, no.3, Romania

Keywords:

methods, mycotoxins, TLC, ELISA, HPLC

Abstract

Mycotoxins are primarily low molecular weight, polar organic compounds that are soluble in a variety of organic solvents and are generated by fungal secondary metabolism. Mycotoxins have a significant impact on both animal and human health. The purpose of this article is to highlight the use of different chromatographic separation techniques in the determination of mycotoxins in food and feed. The significant implications for human and animal health of the ingestion of these mycotoxins and the ensuing legislative requirements in many countries necessitated the development of analytical methods. High-performance liquid chromatography (HPLC) has become the predominant separation technique in mycotoxin analysis, while thin-layer chromatography and gas chromatography are still utilized. UV or fluorescence detectors have found widespread use in mycotoxin determination, even though HPLC has become the omnipresence method of choice. These systems either make use of the mycotoxin of interest's inherent UV absorption or fluorescence, or they derivatize it using techniques that have been developed to allow for suitably sensitive detection.

References

Natasha, L., Cuong, C., Stephan, F., Simon, A.H., Rudolf, K., Christopher, T.E., Advancing Mycotoxin Detection in Food and Feed: Novel Insights from Surface-Enhanced Raman Spectroscopy (SERS), Advanced Materials, Volume 36, Issue 15, 2024, https://doi.org/10.1002/adma.202309625

Eskola, M., Kos, G., Elliott, C.T., Hajšlová, J., Mayar, S., Krska, R., Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 2019, (), 1–17. doi:10.1080/10408398.2019.1658570

Agriopoulou, S., Stamatelopoulou, E., & Varzakas, T., Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods, 2020, 9(4), 518. doi:10.3390/foods9040518

Kizis, D., Vichou, A.-E., & Natskoulis, P. I., Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. Sustainability, 2021, 13(5), 2537. doi:10.3390/su13052537

Malachová, A., Stránská, M., Václavíková, M., Elliott, C. T., Black, C., Meneely, J., … Krska, R., Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Analytical and Bioanalytical Chemistry, 2017, 410(3), 801–825. doi:10.1007/s00216-017-0750-7

Sulyok, M., Stadler, D., Steiner, D., & Krska, R., Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: challenges and solutions. Analytical and Bioanalytical Chemistry, 2020, doi:10.1007/s00216-020-02489-9

Bueno, D., Istamboulie, G., Muñoz, R., & Marty, J. L., Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods. Applied Spectroscopy Reviews, 50(9), 728–774., 2015, doi:10.1080/05704928.2015.1072092

Janik, E., Niemcewicz, M., Podogrocki, M., Ceremuga, M., Gorniak, L., Stela, M., & Bijak, M., The Existing Methods and Novel Approaches in Mycotoxins’ Detection. Molecules, 26(13), 3981., 2021, doi:10.3390/molecules26133981

Singh, J., & Mehta, A., Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Science & Nutrition, 2020, doi:10.1002/fsn3.1474

Maragos, C.M., & Busman, M., Rapid and advanced tools for mycotoxin analysis: a review. Food Additives & Contaminants: Part A, 27(5), 688–700, 2010, doi:10.1080/19440040903515934

Lin, L., Zhang, J., Wang, P., Wang, Y., & Chen, J., Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. Journal of Chromatography A, 1998, 815(1), 3–20. doi:10.1016/s0021-9673(98)00204-0

Bahauddeen, S., Siti, M.A., Wan Rosli, W.I. and Nurzafirah, M., Development and validation of quantitative thin layer chromatographic technique for determination of total aflatoxins in poultry feed and food grains without sample clean-up, J Adv Vet Anim Res. 2021 Dec; 8(4): 656–670, doi: 10.5455/javar.2021.h558

Qu, L.L., Jia, Q., Liu, C., Wang, W., Duan, L., Yang, G., et al., Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. J Chromatogr A., 2018, 1579:115–20. https://doi.org/10.1016/j.chroma.2018.10.024

Chemistry LibreTexts. Chemistry LibreTexts. UC Davis Library; CA: 2019. Thin layer chromatography.

Boshra, M.H., El-Housseiny, G.S., Farag, M.M. et al., Evaluation of ELISA and immunoaffinity fluorometric analytical tools of four mycotoxins in various food categories. AMB Expr 13, 123, 2023, https://doi.org/10.1186/s13568-023-01629-5

Rodríguez-Carrasco, Y., Berrada, H., Font, G., Mañes J. Multi-mycotoxin analysis in wheat semolina using an acetonitrile-based extraction procedure and gas chromatography–tandem mass spectrometry. J. Chromatogr. A. 2012, 1270:28–40. doi: 10.1016/j.chroma.2012.10.061.

Cardinael, P., Casabianca, H., Peulon-Agasse, V., & Berthod, A., Sample Derivatization in Separation Science. Analytical Separation Science, 063–063, 2015, doi:10.1002/9783527678129.ass

Amelin, V.G., Karaseva, N. M., & Tret’yakov, A. V., Chromatographic methods for the determination of mycotoxins in food products. Journal of Analytical Chemistry, 2013, 68(3), 195–205. doi:10.1134/s1061934813030027

Zhang, K., & Banerjee, K., A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins, 12(9), 539., 2020, doi:10.3390/toxins12090539

Turner, N. W., Subrahmanyam, S., & Piletsky, S. A., Analytical methods for determination of mycotoxins: A review. Analytica Chimica Acta, 2009,632(2), 168–180, doi:10.1016/j.aca.2008.11.010

Vishal, A., Amanpreet, S., Debarati, P., Diptarka, D., Petra, U., Sounak, G., Roshani, S., Gobardhan, S., Daniela, E. and Kumar, S., Recent Advances in the Detection of Food Toxins Using Mass Spectrometry, Chem Res Toxicol., 2023 Dec 18; 36(12): 1834–1863., doi: 10.1021/acs.chemrestox.3c00241

Smaoui, S., Ben Braïek, O., & Ben Hlima, H., Mycotoxins Analysis in Cereals and Related Foodstuffs by Liquid Chromatography-Tandem Mass Spectrometry Techniques. Journal of Food Quality, 2020, 1–23. doi:10.1155/2020/8888117

Rafał, S., Natalia, C., Wojciech, Z., Wojciech, Z. and Michal, B., Application of Biosensors for the Detection of Mycotoxins for the Improvement of Food Safety, Toxins 2024, 16(6), 249; https://doi.org/10.3390/toxins16060249

Kong, W. J., Li, J.Y. , Qiu, F. , Wei, J.H. , Xiao, X.H., Zheng, Y., & Yang, M.H., Development of a sensitive and reliable high performance liquid chromatography method with fluorescence detection for high‐throughput analysis of multi‐class mycotoxins in Coix seed. Analytica Chimica Acta, 2013, 799, 68–76. 10.1016/j.aca.2013.08.042

Mochamad, L., & Hermanto, B., High‐performance liquid chromatography ultraviolet‐photodiode array detection method for aflatoxin B1 in cattle feed supplements. Veterinary World, 2017,10(8), 932 10.14202/vetworld.2017.932-938

Bessaire, T., Mujahid, C., Mottier, P., & Desmarchelier, A., Multiple Mycotoxins Determination in Food by LC-MS/MS: An International Collaborative Study. Toxins, 11(11), 2019, 658. doi:10.3390/toxins11110658

Tittlemier, S.A., Cramer, B., Dall'Asta, C., Iha, M.H., Lattanzio, V.M.T., Malone, R.J., Maragos, C., Solfrizzo, M., Stranska-Zachariasova, M., Stroka, J. Developments in mycotoxin analysis: an update for 2017 –2018. World Mycotoxin J. 2019; 12 :3–29. doi: 10.3920/WMJ2018.2398.

Pascale, M., De Girolamo, A., Lippolis, V., Stroka, J., Mol, H.G.J., Lattanzio. VMT Performance Evaluation of LC-MS Methods for Multimycotoxin Determination. J. AOAC Int. 2019 doi: 10.5740/jaoacint.19-0068.

Bian, Y., Zhang, Y., Zhou, Y., Wei, B., Feng, X., Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins 2023, 15, 215. https://doi.org/10.3390/toxins15030215

Salim, S.A., Sukor, R., Ismail, M.N., Selamat, J., Dispersive Liquid–Liquid Microextraction (DLLME) and LC-MS/MS Analysis for Multi-Mycotoxin in Rice Bran: Method Development, Optimization and Validation. Toxins 2021, 13, 280. https://doi.org/10.3390/toxins13040280

Tahoun, I. F., Gab-Allah, M.A., Yamani, R.N., & Shehata, A., Development and validation of a reliable LC-MS/MS method for simultaneous determination of deoxynivalenol and T-2 toxin in maize and oats. Microchemical Journal, 169, 106599, 2021, doi:10.1016/j.microc.2021.106599

Maragou, N.C., Thomaidis, N.S., & Koupparis, M.A., Optimization and Comparison of ESI and APCI LC-MS/MS Methods: A Case Study of Irgarol 1051, Diuron, and their Degradation Products in Environmental Samples. Journal of The American Society for Mass Spectrometry, 22(10), 1826–1838, 2011, doi:10.1007/s13361-011-0191-z

Zhao, Y., Wan, L.-H., Bai, X.-L., Liu, Y.-M., Zhang, F.-P., Liu, Y.-M., & Liao, X., Quantification of mycotoxins in vegetable oil by UPLC-MS/MS after magnetic solid-phase extraction. Food Additives & Contaminants: Part A, 34(7), 1201–1210, 2017, doi:10.1080/19440049.2017.1319074

Dávid, R., József, K., Biljana, D., Škrbić, C.V., Mónika, V., and András, S., Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis, Toxins (Basel). 2023 Feb; 15(2): 134, doi: 10.3390/toxins15020134

Li, P., Zhang, Z., Hu, X., & Zhang, Q., Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: Current status and prospects. Mass Spectrometry Reviews, 2013, doi:10.1002/mas.21377

Vargas Medina, D.A., Bassolli Borsatto, J.V., Soares Maciel, E.V., & Lanças, F.M., Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends in Analytical Chemistry, 2020, 116156. doi:10.1016/j.trac.2020.116156

Urusov, A., Zherdev, A., Petrakova, A., Sadykhov, E., Koroleva, O., & Dzantiev, B., Rapid Multiple Immunoenzyme Assay of Mycotoxins. Toxins, 7(2), 238–254, 2015, doi:10.3390/toxins7020238

Liang, M., Zhang, Q., Li, P., Advances in Visual Immunoassays for Sensitive Detection of Mycotoxins in Food—A Review. Chem. Proc. 2021, 5, 25. https://doi.org/10.3390/CSAC2021-10443

Rahim, K., Farooq, A., Farinazleen, M.G., A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches, Heliyon, Volume 10, Issue 8, 2024, e28361, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e28361.

Porosnicu, I., Ailincai, L.I., Mares, M., The world of mycotoxins - A systematic review . Scientific Works. Series C. Veterinary Medicine, Vol. LXIX, 2023, Issue 1, ISSN 2065-1295, 189-198.

Downloads

Published

2024-10-31