Honey – Biological Activity - A Review
Keywords:
honey, sanogenic properties, flavonoids, antioxidant activity, cancerAbstract
Honey, considered a functional food with a complex chemical composition, has been revered since ancient times for its nutritional and therapeutic properties. In addition to its high sugar content, honey contains a wide variety of bioactive components, especially phenolic acids and flavonoids, which gives it a high antioxidant and anti-inflammatory activity. In addition, results obtained by in vitro and in vivo testing of different types of honey have demonstrated the potential effects of this product in the prevention, progression and therapy of cancer. The antitumor effects of honey are generally attributed to different mechanisms, such as blocking the cell cycle, activating the mitochondrial pathway, permeabilizing the outer mitochondrial membrane, inducing apoptosis and, on the other hand, modulating oxidative stress, ameliorating inflammation and inhibiting angiogenesis. These aspects have demonstrated excellent preclinical potential in a variety of conditions and physiological systems, an aspect that can guide future research in thoroughly delving into the mechanisms of action of this proven "superfood" that can be optimized for the benefit of humanity.
References
Doner, L.W. Honey. In B. Caballero, P.M. Finglas, & L.C. Trugo (Eds.), Encyclopedia of food sciences and nutrition (2nd ed., pp. 3125–3130). 2003, London: Academic Press.
Sabatini, A.G. Il miele: Origine, composizione e proprieta`. In A.G. Sabatini, L. Botolotti, & G.L. Marcazzan (Eds.), Conscere il miele (pp. 3–37). Bologna-Milano: Avenue Media, 2007.
Escuredo, O, Míguez, M, Fernández-González, M, & Seijo, MC. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chemistry, 2013, 138, 851–856
Ciappini, M, María Vitelleschi M, Calviño, A. Chemometrics Classification of Argentine Clover and Eucalyptus Honeys According to Palynological, Physicochemical, and Sensory Properties. International Journal of Food Properties 2016, 19(1), 111–123
Khalafi, R.; Goli, S.A.H.; Behjatian, M. Characterization and Classification of Several Monofloral Iranian Honeys Based on Physicochemical Properties and Antioxidant Activity. International Journal of Food Properties 2016, 19(5), 1065–1079
Boussaid, A, Chouaibia, M, Rezigb, L, Hellalc, R, Donsìa, F, Ferraria, G, Hamdib, S. Physicochemical and Bioactive Properties of Six Honey Samples from Various Floral Origins from Tunisia. Arabian Journal of Chemistry 2014, DOI:10.1016/j.arabjc.2014.08.011
Perez-Arquillue, C.; Conchello, P.; Arino, A.; Juan, T.; Herresa, A. Quality Evaluation of Spanish Rosemary (Rosomarinus Officinalis) Honey. Food Chemistry 1994, 51, 207–210.
Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research., 2004; 24(10):851–874.
Meda, A., Lamien, C.E., Romito, M., Millogo, J., Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity., Food Chemistry, 2005; 91(3):571–577.
Jaganathan, S.K., Mandal, M. Antiproliferative effects of honey and of its polyphenols: a review. J Biomed Biotechnol, 2009, 1–13, doi:10.1155/2009/830616
Al-Mamary, M., Al-Meeri, A., Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutrition Research., 2002; 22(9):1041–1047.
Bogdanov, S, Jurendic, T, Sieber, R, & Gallmann, P. Honey for nutrition and health: A review. Journal of the American College of Nutrition, 2008, 27, 677–689. 13. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797.
North, J.A.; Spector, A.A.; Buettner, G.R. Cell fatty acid composition affects free radical formation during lipid peroxidation. Am. J. Physiol. 1994, 267, 177–188.
Banerjee, S.; Ghosh, J.; Sil, P.C. Drug metabolism and oxidative stress: Cellular mechanism and new therapeutic insights. Biochem. Anal. Biochem. 2016, 5, 255.
Yang, Y.; Bazhin, A.V.; Werner, J.; Karakhanova, S. Reactive oxygen species in the immune system. Reactive oxygen species in the immune system. Int. Rev. Immunol. 2013, 32, 249–270
Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 761264.
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126.
Palma, J.M., Seiquer, I. To Be or Not to Be: An Antioxidant? That Is the Questiontle. Antioxidants 2020, 9, 1234.
Battino, M., Giampieri, F., Cianciosi, D., Ansary, J., Chen, X., Zhang, D., et al., The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation, Phytomedicine, 2020, 1531702020/01/11/.
Bogdanov, S, Jurendic, T, Sieber, R, & Gallmann, P. Honey for nutrition and health: A review. Journal of the American College of Nutrition, 2008, 27, 677–689.
Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Hua Gan, S. Physicochemical and Antioxidant Properties of Malaysian Honeys Produced by Apis Cerana, Apis Dorsata and Apis Mellifera. Complement. Altern. Med. 2013, 13, 1–12
Kishore, R.K., Halim, A.S., Syazana, M.S.N., Sirajudeen, K.N.S. Tualang honeyhas higher phenolic content and greater radical scavenging activity comparedwith other honey sources. Nutr. Res. 2011, 31 (4), 322–325.
Bouayed, J.; Bohn, T. Exogenous antioxidants-Double-edged swords in cellular redox state. Oxid. Med. Cell. Longev. 2010, 3, 228–237.
Mărghitaș L. A.. Albinele și produsele lor. Edit. Ceres. București. 1997, 387 pp
Rice-Evans, C. A., & Packer, L. Flavonoids in health and disease. In A. AnnieFleuriet & J.-J. Macheix (Eds.), Phenolic acids in fruits and vegetables. New York: Marcel Dekker. 2003
Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L. and Delikanli, B., Phenolics in Human Health, International Journal of Chemical Engineering and Applications, 2014, Vol. 5, No. 5.
Alvarez-Suarez, J. M, Giampieri, F, González-Paramás, A. M, Damiani, E, Astolfi, P, Martinez-Sanchez, G, et al.. Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food and Chemical Toxicology, 2012, 50, 1508–1516.
BenSaad, L. A., Kim, K. H., Quah, C. C., Kim, W. R., & Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. Bmc Complementary and Alternative Medicine, 2017, 17(1), 47.
Kakkar, Sahil, Bais, Souravh, A Review on protocatechuic acid and its Potential Pharmacological , ISRN of Pharmacology, 26 de març de 2014.
Ferreira, R.D.S.; Mendonça, L.A.B.M.; Ribeiro, C.F.A.; Calças, N.C.; Guimarães, R.D.C.A.; Nascimento, V.A.D.; Gielow, K.D.C.F.; Carvalho, C.M.E.; Castro, A.P.D.; Franco, O.L. Relationship between Intestinal Microbiota, Diet and Biological Systems: An Integrated View. Crit. Rev. Food Sci. Nutr. 2020.
Pentoś, K.; Łuczycka, D.; Oszmiański, J.; Lachowicz, S.; Pasternak, G. Polish Honey as a Source of Antioxidants—A Comparison with Manuka Honey. J. Apic. Res. 2020, 59, 939–945.
Hailu, D., Belay, A., Melissopalynology and antioxidant properties used to differentiate Schefflera abyssinica and polyfloral honey, PlosOne, 2020, https://doi.org/10.1371/journal.pone.0240868
Dzugan, M., Tomczyk, M., Sowa, P., Grabek-Lejko, D., Antioxidant Activity as Biomarker of Honey Variety, Molecules, 2018, 23, 2069
Maric, A., Jovanov, P., Sakac, M., Novakovic, A., Hadnađev, M., Pezo, L., Mandic, A., Milicevic, N., Đurovic, A., Gadˇzuric, S., A comprehensive study of parameters correlated with honey health benefits, RSC Adv., 2021, 11, 12434–12441.
Akhmazillah, F.N.; Farid, M.M.; Silva, F.V.M. High-Pressure Processing of Manuka Honey: Improvement of Antioxidant Activity, Preservation of Colour and Flow Behaviour. Food Bioprocess Technol. 2014, 7, 2299–2307
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 10.3322/caac.21660.
Hanahan, D., Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.
Chari, R.V. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2008, 41, 98–107.
Afrin, S., Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Amici, A., Cianciosi, D., Quiles, J.L., Battino, M. Manuka honey synergistically enhances the chemopreventive effect of 5-fluorouracil on human colon cancer cells by inducing oxidative stress and apoptosis, altering metabolic phenotypes and suppressing metastasis ability. Free Radic. Biol. Med. 2018, 126, 41–54.
Hakim, L., Alias, E., Makpol, S., Ngah, W.Z., Morad, N.A., Yusof, Y.A. Gelam honey and ginger potentiate the anti cancer effect of 5-FU against HCT 116 colorectal cancer cells. Asian Pac. J. Cancer Prev. 2014, 15, 4651–4657.
Aryappalli, P., Shabbiri, K., Masad, R.J., Al-Marri, R.H., Haneefa, S.M., Mohamed, Y.A., Arafat, K., Attoub, S., Cabral-Marques, O., Ramadi, K.B. et al. Inhibition of Tyrosine-Phosphorylated STAT3 in Human Breast and Lung Cancer Cells by Manuka Honey is Mediated by Selective Antagonism of the IL-6 Receptor. Int. J. Mol. Sci. 2019, 20, 4340.
Aryappalli, P.; Al-Qubaisi, S.S.; Attoub, S.; George, J.A.; Arafat, K.; Ramadi, K.B.; Mohamed, Y.A.; Al-Dhaheri, M.M.; Al-Sbiei, A.; Fernandez-Cabezudo, M.J.; et al. The IL-6/STAT3 Signaling Pathway Is an Early Target of Manuka Honey-Induced Suppression of Human Breast Cancer Cells. Front. Oncol. 2017, 7, 167.
Fauzi, A.N., Norazmi, M.N., Yaacob, N.S. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food Chem. Toxicol. 2011, 49, 871–878.
Samarghandian, S., Afshari, J.T., Davoodi, S. Honey induces apoptosis in renal cell carcinoma. Pharmacogn. Mag. 2011, 7, 46–52.
Fernandez-Cabezudo, M.J., El-Kharrag, R., Torab, F., Bashir, G., George, J.A., El-Taji, H.,al-Ramadi, B.K. Intravenous administration of manuka honey inhibits tumor growth and improves host survival when used in combination with chemotherapy in a melanoma mouse model. PLoS ONE, 2013, 8, e55993.
Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE 2014, 9, e94860.
Nik Man, N.M., Hassan, R., Ang, C.Y., Abdullah, A.D., Mohd Radzi, M.A., Sulaiman, S.A. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines. Biomed Res. Int. 2015, 2015, 307094
Afrin, S., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T.Y., Cianciosi, D., Reboredo-Rodriguez, P., Amici, A., Quiles, J.L., Battino, M. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 1: The suppression of cell proliferation, promotion of apoptosis and arrest of the cell cycle. Food Funct. 2017, 9, 2145–2157
Galijatovic, A., Otake, Y., Walle, U.K., Walle, T., Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells--potential role in carcinogen bioinactivation, Pharm Res., 2001, 18(3):374-9.
Pichichero E., Cicconi R., Mattei M., Muzi M.G., Canini A. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. Int. J. Oncol. 2010; 37:973–981.
Vydia Priyadarsini, R., Senthil Murugan, R., Maitreyi, S., Ramalingam, Karunagaran, D., Nagini, S., The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition, Eur J Pharmacol, 2010, 15;649(1-3):84-91.
Crow M.T., Mani K., Nam Y.J., Kitsis R.N. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ. Res., 2004;95:957–970.
Mouria M., Gukovskaya A.S., Jung Y., Buechler P., Hines O.J., Reber H.A., Pandol S.J. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int. J. Cancer. 2002;98:761–769. doi: 10.1002/ijc.10202
Ren J., Cheng H., Xin W.Q., Chen X., Hu K. Induction of apoptosis by 7-piperazinethylchrysin in HCT-116 human colon cancer cells. Oncol. Rep., 2012;28:1719–1726.
Elmore, S., Apoptosis: a Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35 (4), 495–516.
Jeong, S. Y., and Seol, D. W. The Role of Mitochondria in Apoptosis. BMB Rep. 2008, 41 (1), 11–22.
Dumitrescu, G., Biologie celulară –Principii fundamentale, Ed. Eurobit, Timișoara, 2016, ISBN 978-973-132-339-8.
Estaquier, J., Vallette, F., Vayssiere, J. L., and Mignotte, B. The Mitochondrial Pathways of Apoptosis. Adv. Exp. Med. Biol. 942, 2012, 157–183. 60. Fan, T. J., Han, L. H., Cong, R. S., and Liang, J. Caspase Family Proteases and Apoptosis. Acta Biochim. Biophys. Sin (Shanghai), 2005, 37 (11), 719–727.
Chenhao Liu, Yiwei Zeng, Yulong Wen, Xinggui Huang and Yi Liu, Natural Products Modulate Cell Apoptosis: A Promising Way for the Treatment of Ulcerative Colitis, Frontiers in Pharmacology, Review, published: 31 January 2022, doi: 10.3389/fphar.2022.806148
Fauzi, A.N., Norazmi, M.N., Yaacob, N.S. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food Chem. Toxicol. 2011, 49, 871–878.
Yaacob N.S., Nengsih A., Norazmi M.N. Tualang honey promotes apoptotic cell death induced by tamoxifen in breast cancer cell lines. Evid. Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/989841.
Wang Y., Kim N.S., Haince J.F., Kang H.C., David K.K., Andrabi S.A., Poirier G.G., Dawson V.L., Dawson T.M. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos), Sci. Signal., 2011.
Duo J., Ying G.G., Wang G.W., Zhang L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol. Med. Rep., 2012;5:1453–1456.
Yang Y., Karakhanova S., Werner J., Bazhin A.V. Reactive oxygen species in cancer biology and anticancer therapy.Curr. Med. Chem.2013;20:3677–3692.
Pichichero E., Cicconi R., Mattei M., Canini A. Chrysin-induced apoptosis is mediated through p38 and Bax activation in B16-F1 and A375 melanoma cells., Int. J. Oncol., 2011;38:473–483.
Jaganathan S.K., Mandal M. Involvement of non-protein thiols, mitochondrial dysfunction, reactive oxygen species and p53 in honey-induced apoptosis.Investig. N. Drugs., 2010;28:624–633.
Aoshima H., Ayabe S. Prevention of the deterioration of polyphenol-rich beverages. Food Chem. 2007;100:350–355.
Batumalaie K., Zaman Safi S., Mohd Yusof K., Shah Ismail I., Devi Sekaran S., Qvist R. Effect of gelam honey on the oxidative stress-induced signaling pathways in pancreatic hamster cells. Int. J. Endocrinol. 2013; doi: 10.1155/2013/367312.
Li, X., Huang, Q., Ong, C.N., Yang, X.F., Shen, H.M. Chrysin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB. Cancer Lett. 2010, 293, 109–116.
Abdel Aziz A., Rady H., Amer M., Kiwan H. Effect of some honey bee extracts on the proliferation, proteolytic and gelatinolytic activities of the hepatocellular carcinoma Hepg2 cell line. Aust. J. Basic Appl. Sci. 2009; 3:2754–2769.
Abubakar M.B., Abdullah W.Z., Sulaiman S.A., Suen A.B. A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey. Int. J. Mol. Sci. 2012;13:15054–15073. doi: 10.3390/ijms131115054.
Tonks, A. J., Cooper, R. A., Jones, K. P., Blair, S., Parton, J., Tonks, A. Honey stimulates inflammatory cytokine production from monocytes. Cytokine, 2003, 21, 242–247.
Tonks, A. J., Dudley E, Porter, N. G., Parton, J., Brazier, J., Smith, E. L. and Tonks, A., A 5.8-kDa component of manuka honey stimulates immune cells via TLR4, Journal of Leukocyte Biology Volume 82, November 2007.
Gasparrini M, Afrin S, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Amici A, et al.. Protective effects of manuka honey on LPS-treated RAW 264.7 macrophages. part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem Toxicol., 2018, 120:578–87.
Chepulis LM, Francis E. An initial investigation into the anti-inflammatory activity and antioxidant capacity of alpha-Cyclodextrin-Complexed manuka honey. J Complement Integr Med., 2012, 9 (1).
Leong AG, Herst PM, Harper JL. Indigenous new Zealand honeys exhibit multiple anti-inflammatory activities. Innate Immun., 2012, 18:459–66.
Minden-Birkenmaier BA, Cherukuri K, Smith RA, Radic MZ, Bowlin GL. Manuka honey modulates the inflammatory behavior of a dHL-60 neutrophil model under the cytotoxic limit. Int J Biomater., 2019, 2019:1–12.
Ahmed, S., Sulaiman, S.A, Othman, NH., Oral administration of tualang and manuka honeys modulates breast cancer progression in sprague-dawley rats model. Evidence-Based Complement Altern Med., 2017, 2017:1–15.
Raynaud, A., Ghezali, L., Gloaguen, V., Liagre, B., Quero, F., Petit, J.M. Honey-induced macrophage stimulation: AP-1 and NF-kappaB activation and cytokine production are unrelated to LPS content of honey. Int. Immunopharmacol. 2013, 17, 874–879.