Comparison of the of BBAP and CDDP in Fragaria sp. Polymorphism Analysis

Authors

  • Silvia Farkasová AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Lucia Urbanová AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Jana Žiarovská Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Matúš Kyseľ Department of Dendrobiology, Institute of Forest Ecology, Slovak Academy of Sciences - Zvolen, Vieska nad Žitavou 178, 951 52 Slepčany, Slovak Republic
  • Alžbeta Jauschová Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Lenka Kučerová Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Miroslava Kačániová Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic

Keywords:

strawberries, BBAP, CDDP, polymorphism

Abstract

Strawberries are popular worldwide for their nutritional benefits. Their germplasm is widely analysed by different molecular and DNA based markers. Here, two different marker techniques were used to analyze intra- and interspecies variability of 38 genotypes of two strawberry species (Fragaria x ananassa and Fragaria vesca L.). Bet v 1 based amplified polymorphism (BBAP) and conserved DNA-derived polymorphism (CDDP) utilized to obtain specific fingerprints. BBAP technique generated lower polymorphism comparing to CDDP (BBAP – 99.01%, CDDP – 99.65%), but both of the techniques separated all of the analysed strawberry genotypes. The groups of genotypes in constructed dendrograms were not clustered according the specie specificity.

References

Xu, X., Chen, C., Fan, B., and Chen, Z., Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors, Plant Cell, 2006, 18, 1310-1326.

Song, Y., Cui, H., Shi, Y., Xue, I., Ji, Ch., Zhang, Ch., Yuan, L., Li, R., Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics, 2020, 21, 786.

Yang, J., Ding, Z., Wang, J., Tian, S., Duan, K., Gao., Q. Bet v 1 Potential Allergens Are Involved in Anthracnose Resistance of Strawberry Varieties, 2021, 11, 21-32.

Fernandes, H., Michalska, K., Sikorski, M., Jaskolski, M. Structural and functional aspects of PR-10 proteins. The FEBS Journal, 2013, 280, 169-1199.

Somssich, I.E., Schmelzer, E., Kawalleck, P., Hahlbrock, K., Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Molecular Genetics and Genomics, 1988, 213, 93-98.

Neudecker, P., Schweimer, K., Nerkamp, J., Scheurer, S., Vieths, S., Sticht, H., Rösch, P., Allergic cross-reactivity made visible: solution structure of the major cherry allergen Pru av 1. Journal of Biological Chemistry, 2001, 276, 22756-22763.

Muñoz, C., Hoffmann, T., Escobar, N.M., Ludemann, F., Botella, M.A., Valpuesta, V., Schwab, W., The strawberry fruit Fra a allergen functions in flavonoid biosynthesis, Molecular Plant, 2010, 3, 113-124.

Casañal, A., Zander, U., Muñoz, C., Dupeux, F., Luque, I., Botella, M.A., Schwab, W., Valpuesta, V., Marquez, J.A., The strawberry pathogenesis-related 10 (PR-10) Fra a proteins control flavonoid biosynthesis by binding to metabolic intermediates, Journal of Biological Chemistry, 2013, 288, 35322-35332.

Jenkins, J.A., Griffiths-Jones, S., Shewry, P.R., Breiteneder, H., Clare Mills, E.N., Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: An in silico analysis. Journal of Allergy and Clinnical Immunology, 2005, 115, 163-170.

Nedyalkova, M., Vasighi, M., Azmoon, A., Naneva, L. Simeonov, V., Sequence-Based Prediction of Plant Allergenic Proteins: Machine Learning Classification Approach. ACS Omega, 2023, 8, 3698-3704.

Urbanová, L., Žiarovská, J. Variability of DNA based amplicon profiles generated by Bet v 1 homologous among different vegetable species. Acta Fytotechnica et Zootechnica, 2021, 24, 1- 6.

Žiarovská, J., Urbanová, L., Utilization of Bet v 1 homologs based amplified profile (BBAP) variability in allergenic plants fingerprinting. Biologia, 2022, 77, 517-523.

Žiarovská, J., Zeleňáková, L., Application of genomic data for PCR screening of Bet v 1 conserved sequence in clinically relevant plant species. Systems Biology. London: IntechOpen, 2019, pp. 65-82.

Collard, B. C., Mackill, D. J., Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Molecular Biology Reporter, 2009, 27, 558-562.

Zhang, Y., Wang, L., The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 2005, 5, 1.

Shen, Q.-H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ülker, B., Somssich, I.E., Schulze-Lefert, P., Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 2007, 315, 1098–1103.

Encinas-Villarejo, S., Maldonado, A.M., Amil-Ruiz, F., de los Santos, B., Romero, F., Pliego-Alfaro, F., Muñoz-Blanco, J., Caballero, J.L., Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance, Journal of Experimental Botany, 2009, 60, 3043-3065

Peng, Y., Bartley, L. E., Chen, X., Dardick, C., Chern, M., Ruan, R., Canlas, P.E., Ronald, P.C., OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Molecular Plant, 2008, 1, 446–458.

Bakshi, M., Oelmüller, R.. WRKY transcription factors: Jack of many trades in plants, Plant Signal Behavior, 2014, 9, e27700.

Khoso, M.A., Hussain, A., Ritonga, F.N., Ali, Q., Channa, M.M., Alshegaihi, R.M., Meng, W., Ali, M., Zaman, W., Brohi, R.D., Liu, F., Manghwar H., WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants, Frontiers in Plant Science, 2022, 13, 1039329.

White, T.J., Bruns, T., Lee Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 1990, 18.1: 315-322.

Davila, J.A., Sánchez de la Hoz, M.P., Loarce, Y., Ferrer, E., The use of random amplified microsatellite polymorphic DNA and coefficients of parentage to determine genetic relationships in barley. Genome, 1998, 41, 477-486.

Kafkas, S., Özgen, M., Doğan, Y., Özcan, B., Ercişli, S., Serçe, S., Molecular characterization of mulberry accessions in Turkey by AFLP markers. Journal of American Society for Horticulturae Science, 2008, 4, 593–597.

Pavlović, N., Zdravković, J., Cviklić, D., Ydravković, M., Adžić, S., Pavlovic, S., Surlan-Momirovic, G., Characterization of onion genotypes by use of RAPD markers, Genetika, 2012, 2, 269-278.

Taia, W.K., Pollen Allergens of some Road Trees, Shrubs and Herbs in Alexandria, Egypt. Biomedical Science, 2020, 1, 187-194.

Peng, X., Hu, Y., Tang, X., Zhou, P., Deng, X., Wang, H., Guo, Z., Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta, 2012, 236, 1485-1498.

Wang, X., Li, J., Guo, J., Qiao, Q., Guo, X., Ma, Y. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. Horticultire Research, 2020, 7, 57.

Bilčíková, J., Farkasová, S., Žiarovská, J. Genetic variability of commercially important apple varieties (Malus × domestica Borkh.) assessed by CDDP markers, Acta fytotechnica et zootechnica, 2021, 24, 21-26

Downloads

Published

2024-10-31