An Identification of Metastasis Regulators in Chicken (Gallus Gallus) Sarcoma Cell Lines Using Transcriptomic Data


  • Nhu P.Y. Doan Faculty of Agriculture, University of Szeged – H6800, Hódmezővásárhely, Hungary
  • Adrienn Szarvas Institute of Plant Sciences and Environmental Protection, Faculty of Agriculture, University of Szeged – H6800, Hódmezővásárhely, Hungary


candidate genes, differential expression analysis, metastasis, p-value, R, RSV


Rous sarcoma virus (RSV), which is an oncovirus, can cause sarcoma and consequently induce malignant tumours in chicken (Gallus gallus). Research into molecular factors that regulate the tumour-inducing ability are essential to develop prevention and curation methods against RSV. In this study, we aimed to determine candidate genes contributing to the formation of tumours through a transcriptomic analysis in R programming with GSE42516 and GSE15141, which are microarray expression dataset in GEO-NCBI database. We conducted differential expression analysis among a total of 8 metastatic samples and 5 non-metastatic samples, starting from data normalization, then creating model matrixes for pairwise comparisons and using eBayes function to calculate the log fold chance values and significance level of all genes (p-value). As a result, in GSE42516, we identified 295 significant (p-value ≤ 0.05) differentially expressed genes (DEGs), with 195 downregulated genes (logFC ≤ -1) and 190 upregulated genes (logFC ≥ 1). While in GSE15141, a greater list of DEGs was extracted, with 1444 downregulated genes and 1314 upregulated genes. Top 5 DEGs retrieved in GSE42516 were TTC32, DHRS7, RARB, RSPO3, C1QB and RBM24, TOM1L1, LIPI, HINTW, C20orf59 were found in GSE15141. Enrichment GO (in this case, biological process - BP) analysis revealed that the DEGs are mainly enriched in heterochromatin assembly, negative regulation of megakaryocyte differentiation and endocytosis. The identified genes may have a vital role in elucidating the molecular metastasis mechanisms and developing effective strategies against sarcoma virus.


A brief chronicle of retrovirology

The current problem with avian leukosis J virus

The Poultry Guide - Avian Lymphoid Leukosis

Prakash O, Bardot SF, Cole JT. Chicken sarcoma to human cancers: a lesson in molecular therapeutics. Ochsner J. 2007 Summer;7(2):61-4. PMID: 21603517; PMCID: PMC3096390.

Wang LH, Duesberg PH, Kawai S, Hanafusa H. Location of envelope-specific and sarcoma-specific oligonucleotides on RNA of Schmidt-Ruppin Rous sarcoma virus. Proc Natl Acad Sci U S A. 1976 Feb;73(2):447-51. doi: 10.1073/pnas.73.2.447. PMID: 174108; PMCID:

Lai MM, Hu SS, Vogt PK. Occurrence of partial deletion and substitution of the src gene in the RNA genome of avian sarcoma virus. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4781-5. doi: 10.1073/pnas.74.11.4781. PMID: 200931; PMCID: PMC432039.

Weiss SR, Varmus HE, Bishop JM. The size and genetic composition of virus-specific RNAs in the cytoplasm of cells producing avian sarcoma-leukosis viruses. Cell. 1977 Dec;12(4):983-92. doi: 10.1016/0092-8674(77)90163-5. PMID: 202396.

Sefton BM, Hunter T, Beemon K. Product of in vitro translation of the Rous sarcoma virus src gene has protein kinase activity. J Virol. 1979 Apr;30(1):311-8. doi: 10.1128/JVI.30.1.311-318.1979. PMID: 225522; PMCID: PMC353324.

Brugge JS, Erikson RL. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature. 1977 Sep 22;269(5626):346-8. doi: 10.1038/269346a0. PMID: 198667.

Stoker AW, Sieweke MH. v-src induces clonal sarcomas and rapid metastasis following transduction with a replication-defective retrovirus. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10123-7. doi: 10.1073/pnas.86.24.10123. PMID: 2557619; PMCID: PMC298657.

Ishizawar R, Parsons SJ. c-Src and cooperating partners in human cancer. Cancer Cell. 2004 Sep;6(3):209-14. doi: 10.1016/j.ccr.2004.09.001. PMID: 15380511.

Nagahashi M, Shimada Y, Ichikawa H, Kameyama H, Takabe K, Okuda S, Wakai T. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci. 2019 Jan;110(1):6-15. doi: 10.1111/cas.13837. Epub 2018 Nov 27. PMID: 30338623; PMCID: PMC6317963.

Maślikowski BM, Néel BD, Wu Y, Wang L, Rodrigues NA, Gillet G, Bédard PA. Cellular processes of v-Src transformation revealed by gene profiling of primary cells--implications for human cancer. BMC Cancer. 2010 Feb 12;10:41. doi: 10.1186/1471-2407-10-41. PMID: 20152043; PMCID: PMC2837010.

Kovárová D, Plachy J, Kosla J, Trejbalová K, Čermák V, Hejnar J. Downregulation of HOPX controls metastatic behavior in sarcoma cells and identifies genes associated with metastasis. Mol Cancer Res. 2013 Oct;11(10):1235-47. doi: 10.1158/1541-7786.MCR-12-0687. Epub 2013 Aug 12. PMID: 23938949.

Cermák V, Kosla J, Plachý J, Trejbalová K, Hejnar J, Dvorák M. The transcription factor EGR1 regulates metastatic potential of v-src transformed sarcoma cells. Cell Mol Life Sci. 2010 Oct;67(20):3557-68. doi: 10.1007/s00018-010-0395-6. Epub 2010 May 28. PMID: 20505979.

Davis S, Meltzer P (2007). “GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor.” Bioinformatics, 14, 1846–1847.

Wickham H, François R, Henry L, Müller K, Vaughan D (2023). dplyr: A Grammar of Data Manipulation

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research, 43(7),e47.

Dennis, G., Sherman, B.T., Hosack, D.A. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4, R60 (2003).

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686.