Influence of Food on Reproductive Behavior in Drosophila melanogaster


  • Adriana-Sebastiana Musca Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj- Napoca, Calea Mănăștur Street No. 3–5, 400372 Cluj-Napoca, Romania
  • Alexandru Marius Deac Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj- Napoca, Calea Mănăștur Street No. 3–5, 400372 Cluj-Napoca, Romania
  • Gabriela Maria Baci Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj- Napoca, Calea Mănăștur Street No. 3–5, 400372 Cluj-Napoca, Romania
  • Ileana Miclea Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj- Napoca, Calea Mănăștur Street No. 3–5, 400372 Cluj-Napoca, Romania
  • Stefania Dana Coldea Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj- Napoca, Calea Mănăștur Street No. 3–5, 400372 Cluj-Napoca, Romania
  • Marius Zahan Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj- Napoca, Calea Mănăștur Street No. 3–5, 400372 Cluj-Napoca, Romania


Drosophila melanogaster, fruit fly, feeding behavior, diet, mating behavior


In a constantly changing environment, animals are forced to make crucial behavioral choices for survival. Food determines whether wild animals evolve, whether populations decline, or how ecological groups are structured. Animals have the ability to adapt their nutritional needs according to the availability of food, they detect and assimilate nutrients. Drosophila melanogaster, the fruit fly, is considered an important model for various studies. For example, in nutrition research and for understanding the mechanisms of human disease. In this study, we have provided an overview of fruit fly feeding behavior, how diet influences mating behavior and what volatiles attract flies. We show that mating behavior is very closely related to food and that egg laying is influenced by yeast, a very important source of protein.


Simpson, S.J., Raubenheimer, D., The Nature of Nutrition: Princeton University Press; 2012.

Simpson, S.J., Le Couteur, D.G., Raubenheimer, D., Putting the Balance Back in Diet. Cell. 2015;161(1):18-23.

Ma, C., Mirth, C.K., Hall, M.D., Piper MDW. Amino acid quality modifies the quantitative availability of protein for reproduction in Drosophila melanogaster. Journal of Insect Physiology. 2022;139:104050.

Simpson, S.J., Le Couteur D.G., Raubenheimer, D., Solon-Biet, S.M., Cooney, G.J., Cogger, V.C., et al. Dietary protein, aging and nutritional geometry. Ageing Research Reviews. 2017;39:78-86.

Fougeron A-S, Farine J-P, Flaven-Pouchon, J., Everaerts, C., Ferveur J-F. Fatty-Acid Preference Changes during Development in Drosophila melanogaster. PLOS ONE. 2011;6(10):e26899.

Calabrese, R.L., Behavioral Choices: How Neuronal Networks Make Decisions. Current Biology. 2003;13(4):R140-R2.

Itskov, P.M., Ribeiro, C., The Dilemmas of the Gourmet Fly: The Molecular and Neuronal Mechanisms of Feeding and Nutrient Decision Making in Drosophila. Frontiers in Neuroscience. 2013;7.

Giang, T., He, J., Belaidi, S., Scholz, H., Key Odorants Regulate Food Attraction in Drosophila melanogaster. Frontiers in Behavioral Neuroscience. 2017;11.

Gorter, J.A., Billeter, J.C., A Method to Test the Effect of Environmental Cues on Mating Behavior in Drosophila melanogaster. J Vis Exp. 2017(125).

Lin, S., Senapati, B., Tsao C-H. Neural basis of hunger-driven behaviour in Drosophila. Open biology. 2019;9.

Gorter, J.A., Jagadeesh, S., Gahr, C., Boonekamp, J.J., Levine, J.D., Billeter, J-C. The nutritional and hedonic value of food modulate sexual receptivity in Drosophila melanogaster females. Scientific Reports. 2016;6(1):19441.

Good, T.P., Tatar, M., Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. Journal of Insect Physiology. 2001;47(12):1467-73.

Miyakawa, Y., Fujishiro, N., Kijima, H., Morita, H., Differences in feeding response to sugars between adults and larvae in Drosophila melanogaster. Journal of Insect Physiology. 1980;26(10):685-8.

Min, K-J, Flatt, T., Kulaots, I., Tatar, M., Counting calories in Drosophila diet restriction. Experimental Gerontology. 2007;42(3):247-51.

Bass, T.M., Grandison, R.C., Wong, R., Martinez, P., Partridge, L., Piper, MDW. Optimization of Dietary Restriction Protocols in Drosophila. The Journals of Gerontology: Series A. 2007;62(10):1071-81.

Ômura, H., Honda, K., Feeding responses of adult butterflies, Nymphalis xanthomelas, Kaniska canace and Vanessa indica, to components in tree sap and rotting fruits: synergistic effects of ethanol and acetic acid on sugar responsiveness. Journal of Insect Physiology. 2003;49(11):1031-8.

Zhu, J., Park, K.C., Baker, T.C., Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. J Chem Ecol. 2003;29(4):899-909.

Ruebenbauer, A., Schlyter, F., Hansson, B.S., Löfstedt, C., Larsson, M.C., Genetic variability and robustness of host odor preference in Drosophila melanogaster. Curr Biol. 2008;18(18):1438-43.

Ziegler, A.B., Berthelot-Grosjean, M., Grosjean, Y., The smell of love in Drosophila. Frontiers in Physiology. 2013;4.

Sato, K., Yamamoto, D., Contact-Chemosensory Evolution Underlying Reproductive Isolation in Drosophila Species. Frontiers in Behavioral Neuroscience. 2020;14.

Benton, R., Vannice, K.S., Gomez-Diaz, C., Vosshall, L.B., Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila. Cell. 2009;136(1):149-62.

Abuin, L., Bargeton, B., Ulbrich, M.H., Isacoff, E.Y., Kellenberger, S., Benton, R., Functional Architecture of Olfactory Ionotropic Glutamate Receptors. Neuron. 2011;69(1):44-60.

Ali, M.Z., Anushree, A., Bilgrami A.L., Ahsan, A., Ola, M.S., Haque, R., et al. Phenylacetaldehyde induced olfactory conditioning in Drosophila melanogaster (Diptera: Drosophilidae) larvae. Journal of Insect Science. 2023;23(6).

Grosjean, Y., Rytz, R., Farine, J.P., Abuin, L., Cortot, J., Jefferis, G.S., et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature. 2011;478(7368):236-40.

Barata, A., Campo, E., Malfeito-Ferreira, M., Loureiro, V., Cacho, J., Ferreira, V.. Analytical and Sensorial Characterization of the Aroma of Wines Produced with Sour Rotten Grapes Using GC-O and GC-MS: Identification of Key Aroma Compounds. Journal of Agricultural and Food Chemistry. 2011;59(6):2543-53.

Wightman, F., Lighty, D.L., Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiologia Plantarum. 1982;55(1):17-24.

Kim, J., Jeon, C.O., Park, W., A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid. J Microbiol Biotechnol. 2007;17(10):1727-32.

Holmes, R.S., Alcohol dehydrogenases: a family of isozymes with differential functions. Alcohol Alcohol Suppl. 1994;2:127-30.

Ogueta, M., Cibik, O., Eltrop, R., Schneider, A., Scholz, H., The Influence of Adh Function on Ethanol Preference and Tolerance in Adult Drosophila melanogaster. Chemical Senses. 2010;35(9):813-

Schneider, A., Ruppert, M., Hendrich, O., Giang, T., Ogueta, M., Hampel, S., et al. Neuronal Basis of Innate Olfactory Attraction to Ethanol in Drosophila. PLOS ONE. 2012;7(12):e52007.

Bak, N.K., Rohde, P.D., Kristensen, T.N., Strong Sex-Dependent Effects of Malnutrition on Life- and Healthspan in Drosophila melanogaster. Insects. 2023;15(1).

Kristensen, T.N., Loeschcke, V., Tan, Q., Pertoldi, C., Mengel-From, J., Sex and age specific reduction in stress resistance and mitochondrial DNA copy number in Drosophila melanogaster. Sci Rep. 2019;9(1):12305.

Chapman, T., Partridge, L., Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci. 1996;263(1371):755-9.

Billeter, J.C., Wolfner, M.F., Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J Chem Ecol. 2018;44(9):750-69.

Mansourian, S., Stensmyr, M.C., The chemical ecology of the fly. Curr Opin Neurobiol. 2015;34:95-102.

Sáenz de Miera, C., Monecke, S., Bartzen-Sprauer, J., Laran-Chich, M-P, Pévet, P., Hazlerigg David G, et al. A Circannual Clock Drives Expression of Genes Central for Seasonal Reproduction. Current Biology. 2014;24(13):1500-6.

Becher, P.G., Bengtsson, M., Hansson, B.S., Witzgall, P., Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J Chem Ecol. 2010;36(6):599-607.

Palanca, L., Gaskett, A.C., Günther, C.S., Newcomb, R.D., Goddard M.R., Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS One. 2013;8(9):e75332.

Drummond-Barbosa, D., Spradling, A.C., Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol. 2001;231(1):265-78.

Ribeiro, C., Dickson, B.J., Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol. 2010;20(11):1000-5.

Fricke, C., Bretman, A., Chapman, T., ADULT MALE NUTRITION AND REPRODUCTIVE SUCCESS IN DROSOPHILA MELANOGASTER. Evolution. 2008;62(12):3170-7.

Terashima, J., Takaki, K., Sakurai S., Bownes, M., Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J Endocrinol. 2005;187(1):69-79.

Schultzhaus, J.N., Carney, G.E., Dietary protein content alters both male and female contributions to Drosophila melanogaster female post-mating response traits. Journal of Insect Physiology. 2017;99:101-6.

Wynne, K., Stanley, S., McGowan, B., Bloom, S., Appetite control. J Endocrinol. 2005;184(2):291-318.

Wolfner, M.F., The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity (Edinb). 2002;88(2):85-93.

Liu, H., Kubli, E., Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2003;100(17):9929-33.

Ottiger, M., Soller, M., Stocker, R.F., Kubli, E., Binding sites of Drosophila melanogaster sex peptide pheromones. J Neurobiol. 2000;44(1):57-71.

Scott, K, Brady, R., Jr., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell. 2001;104(5):661-73.

Wigby, S., Chapman, T., Sex peptide causes mating costs in female Drosophila melanogaster. Curr Biol. 2005;15(4):316-21.

Peng, J., Zipperlen, P., Kubli, E., Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr Biol. 2005;15(18):1690-4.

Kelly, R.W., Critchley, H.O., Immunomodulation by human seminal plasma: a benefit for spermatozoon and pathogen? Hum Reprod. 1997;12(10):2200-7.

Carvalho, G.B., Kapahi, P., Anderson, D.J., Benzer, S., Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila. Curr Biol. 2006;16(7):692-6.

Vargas, M.A., Luo, N., Yamaguchi, A., Kapahi, P., A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol. 2010;20(11):1006-11.

Magwere, T., Chapman, T., Partridge, L., Sex Differences in the Effect of Dietary Restriction on Life Span and Mortality Rates in Female and Male Drosophila melanogaster. The Journals of Gerontology: Series A. 2004;59(1):B3-B9.

Fowler, K., Partridge, L., A cost of mating in female fruitflies. Nature. 1989;338(6218):760-1.

Lee, K.P., Simpson, S.J., Clissold, F.J., Brooks, R., Ballard, J.W., Taylor, P.W., et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc Natl Acad Sci U S A. 2008;105(7):2498-503.

Cheriyamkunnel, S.J., Rose, S., Jacob, P.F., Blackburn, L.A., Glasgow, S., Moorse, J., et al. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Current Biology. 2021;31(19):4231-45.e4.

McDonald, D.M., Keene, A.C., The sleep-feeding conflict: Understanding behavioral integration through genetic analysis in Drosophila. Aging (Albany NY). 2010;2(8):519-22.

Mann, K., Gordon Michael D, Scott, K., A Pair of Interneurons Influences the Choice between Feeding and Locomotion in Drosophila. Neuron. 2013;79(4):754-65.

Hoopfer, E.D., Jung, Y., Inagaki, H.K., Rubin, G.M., Anderson, D.J., P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife. 2015;4:e11346.

Chen, J., Reiher, W., Hermann-Luibl, C., Sellami, A., Cognigni, P., Kondo, S., et al. Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF. PLOS Genetics. 2016;12(9):e1006346.

Murakami, K., Yurgel Maria E, Stahl Bethany A, Masek, P., Mehta, A., Heidker, R., et al. translin Is Required for Metabolic Regulation of Sleep. Current Biology. 2016;26(7):972-80.

Murphy, K.R., Deshpande, S.A., Yurgel, M.E., Quinn, J.P., Weissbach, J.L., Keene, A.C., et al. Postprandial sleep mechanics in Drosophila. eLife. 2016;5:e19334.

Chen, D., Sitaraman, D., Chen, N., Jin, X., Han, C., Chen, J., et al. Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila. Nature Communications. 2017;8(1):154.

Senapati, B., Tsao, C-H, Juan Y-A, Chiu T-H, Wu C-L, Waddell, S., et al. A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila. Nature Neuroscience. 2019;22(12):2029-39.