Nutritional Characterization of White Grape Pomace: Potential Feed Additive in Ruminants’ Nutrition


  • Alexandra-Gabriela Oancea National Research and Development Institute for Biology and Animal Nutrition, 077015-Balotesti, Calea Bucuresti, 1, Romania
  • Mihaela Saracila National Research and Development Institute for Biology and Animal Nutrition, 077015-Balotesti, Calea Bucuresti, 1, Romania
  • Alexandru Vlaicu National Research and Development Institute for Biology and Animal Nutrition, 077015-Balotesti, Calea Bucuresti, 1, Romania
  • Iulia Varzaru National Research and Development Institute for Biology and Animal Nutrition, 077015-Balotesti, Calea Bucuresti, 1, Romania
  • Arabela Untea National Research and Development Institute for Biology and Animal Nutrition, 077015-Balotesti, Calea Bucuresti, 1, Romania
  • Catalin Dragomir National Research and Development Institute for Biology and Animal Nutrition, 077015-Balotesti, Calea Bucuresti, 1, Romania


Antioxidant potential, bioactive compounds, nutritional quality, white grape pomace


In today's food industry, fortifying food products with several nutrients is a priority, and animal nutrition represents a key strategy for achieving this goal. Nevertheless, the scarcity and high costs of conventional feedstuffs lead to investigation of industrial by-products as alternative solutions in livestock nutrition. White grape pomace, a by-product of the winery industry, is well-known for its rich resveratrol content. Nevertheless, in addition to this, it can present significant quantities of other nutrients and antioxidant compounds, which exert beneficial effects when incorporated into ruminants’ nutrition. Our study revealed a remarkable concentration of the white grape pomace nutrients, with important minerals, particularly manganese (106.35 mg/kg). The fatty acids profile showed a high composition of polyunsaturated fatty acids (65.05 g/100 g FAME), with a great amount of omega 3 fatty acids (62.66 g/100 g FAME). Concerning the antioxidant compounds, white grape pomace exhibited a concentration of 12.49 mg/g GAE for total polyphenols and 3.27 mg/kg for total flavonoids. Also, our study highlighted its high antioxidant potential, especially assessed through the DPPH radical scavenging assay (74.26 mM eq. Trolox), ABTS radical scavenging assay (75.07 mM eq. Trolox), and total antioxidant capacity (286.26 mM eq. ascorbic acid).


Yano, H., Fu, W., Hemp: A sustainable plant with high industrial value in food processing, Foods, 2023, 3, 1-16

González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., Teissedre, P.-L., Characterization of Polyphenols and Antioxidant Potential of White Grape Pomace Byproducts (Vitis vinifera L.), J. Agric. Food Chem., 2013 61, 11579–11587

Makris, D. P., Boskou, G., Andrikopoulos, N. K., Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures, Bioresour. Technol., 2007, 98, 2963−2967

Casazza, A.A., Aliakbarian, B., de Faveri, D., Fiori, L., Perego, P., Antioxidants from winemaking wastes: A study on extraction parameters using response surface methodology, J. Food Biochem., 2012, 36, 28–37

Fontana, A., Antoniolli, A., Fernández, M. A. D., Bottini, R., Phenolics profiling of pomace extracts from different grape varieties cultivated in Argentina, RSC Adv., 2017, 7, 29446–29457

Yammine, S., Delsart, C., Vitrac, X., Peuchot, M. M., Ghidossi, R., Characterisation of polyphenols and antioxidant potential of red and white pomace by-product extracts using subcritical water extraction, OENO One, 2020, 54, 263–278

Onache, P. A., Geana, E.-I., Ciucure, C. T., Florea, A., Sumedrea, D. I., Ionete, R. E., Tita, O., Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars, Separations, 2022, 9, 395

Averilla, J. N., Oh, J., Kim, H. J., Kim, J. S., Kim, J.S., Potential health benefits of phenolic compounds in grape processing by-products, Food Sci. Biotechnol., 2019, 28, 1607–1615

Vašeková, P., Juráček, M., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., Kolláthová, R., Ivanišová, E., Bioactive compounds and fatty acid profile of grape pomace, Acta fytotechn zootechn, 2020, 23, 230–235

Chikwanha, O. C., Raffrenato, E., Muchenje, V., Musarurwa, H. T., Mapiye, C., Varietal differences in nutrient, amino acid and mineral composition and in vitro rumen digestibility of grape (Vitis vinifera) pomace from the Cape Winelands vineyards in South Africa and impact of preservation techniques, Ind Crops Prod, 2018, 118, 30–37

Chikwanha, O. C., Muchenje, V., Nolte, J. E., Dugan, M. E. R., Mapiye, C., Grape pomace (Vitis vinifera L. cv. Pinotage) supplementation in lamb diets: Effects on growth performance, carcass and meat quality, Meat Sci, 2019, 147, 6–12

Zepf, F., Jin, B., Bioconversion of grape marc into protein rich animal feed by microbial fungi, Chem. eng. process tech, 2013, 1, 1–7

Guerra-Rivas, C., Gallardo, B., Mantecón, Á. R., del Álamo-Sanza, M., Manso, T., Evaluation of grape pomace from red wine by-product as feed for sheep, J. Sci. Food Agric, 2017, 97, 1885–1893

Correddu, F., Lunesu, M. F., Buffa, G., Atzori, A. S., Nudda, A., Battacone, G., Pulina, G., Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants, Animals, 2020, 10, 1-25.

Manso, T., Gallardo, B., Guerra-Rivas, C., Modifying milk and meat fat quality through feed changes, Small Rumin. Res, 2016, 142, 31–37

Varzaru, I., Oancea, A.G., Vlaicu, P.A., Saracila, M., Untea, A.E., Exploring the Antioxidant Potential

of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol

Bioaccessibility, Antioxidants, 2023, 12, 2125

Untea, A., Criste, R. C., Vladescu, L., Development and validation of a microwave digestion–FAAS procedure for Cu, Mn and Zn determination in liver, Rev. Chim., 2012, 63, 341–346.

Turcu, R. P., Panaite, T. D., Untea, A. E., Vlaicu, P. A., Badea, I. A., Mironeasa, S., Effects of grape seed oil supplementation to broilersdiets on growth performance, meat fatty acids, health lipid indices and lipid oxidation parameters, Agriculture, 2021, 11, 404 19. Untea, A .E., Varzaru, I., Panaite, T. D., Gavris, T., Lupu, A., Ropota, M., The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs, Animals, 2020, 10, 191

Saracila, M., Untea, A.E., Panaite, T. D., Varzaru, I., Oancea, A. G., Turcu, R. P., Vlaicu, P. A., Effects of supplementing sea buckthornleaves (Hippophae rhamnoides L.) and chromium (III) in broiler diet on the nutritional quality and lipid oxidative stability of meat, Antioxidants, 2022, 11, 2220

Untea, A.E., Varzaru, I., Saracila, M., Panaite, T. D., Oancea, A. G., Vlaicu, P. A., Grosu, I. A., Antioxidant Properties of Cranberry Leaves and Walnut Meal and Their Effect on Nutritional Quality and Oxidative Stability of Broiler Breast Meat, Antioxidants, 2023,12, 1084

Antoni, B., Jancíková, S., Dordevic, D., Tremlová, B., Grape Pomace Valorization: A Systematic Review and Meta-Analysis, Foods 2020, 9, 1627

Jin, Q., O’Hair, J., Stewart, A. C., O’Keefe, S. F., Neilson, A. P., Kim, Y.-T., McGuire, M., Lee, A., Wilder, G., Huang, H., Compositional Characterization of Different Industrial White and Red Grape Pomaces in Virginia and the Potential Valorization of the Major Components, Foods, 2019, 8, 667

Winkler, A., Weber, F., Ringseis, R., Eder, K., Dusel, G., Determination of polyphenol and crude nutrient content and nutrient digestibility of dried and ensiled white and red grape pomace cultivars, Arch Anim Nutr, 2015, 69, 187–200

Crescente, G., Piccolella, S., Esposito, A., Scognamiglio, M., Fiorentino, A., Pacifico, S., Chemical composition and nutraceutical properties of hempseed: an ancient food with actual functional value, Phytochem. Rev., 2018, 4, 733–749

Polidori, P., Vincenzetti, S., Oleic acid in milk of different mammalian species, Oleic acid dietary sources functions and health benefits, 2013, 7, 127-140.

Schönfeld, P., Wojtczak, L., Short- and medium-chain fatty acids in energy metabolism: The cellular perspective, J. Lipid Res., 2016, 57, 943–954

Carmona-Jiménez, Y., Igartuburu, J. M., Guillén-Sánchez, D. A., García-Moreno, V. M., Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain, Molecules 2022, 27, 6980

Galli, F., Bonomini, M., Bartolini, D., Zatini, L., Reboldi, G., Marcantonini, G., Gentile, G., Sirolli, V., Di Pietro, N., Vitamin E (alpha-tocopherol) metabolism and nutrition in chronic kidney disease, Antioxidants, 2022, 11, 989

Vieira, C., Guerra-Rivas, C., Martínez, B., Rubio, B., Manso, T., Effects of grape pomace supplementation on the diet of lactating ewes as compared to vitamin E on the meat shelf life of suckling lambs, Meat Sci, 2021, 108666

Ivanova, V., Stefova, M., Vojnoski, B., Dörnyei, A., Márk, L., Dimovska, V., Stafilov, T., Kilár, F., Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening, Food Res. Int, 2011, 2851-2860

Bešlo, D., Došlic, G., Agic, D., Rastija, V., Šperanda, M., Gantner, V., Lucic, B., Polyphenols in ruminant nutrition and their effects on reproduction, Antioxidants, 2022, 11, 970

Gessner, D. K., Ringseis R., Eder K., Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals, J Anim Physiol Anim Nutr (Berl), 2017, 101,605-628

Jayanegara, A., Goel, G., Makkar, H. P. S., Becker, K., Reduction in methane emissions from ruminants by plant secondary metabolites: effects of polyphenols and saponins, FAO Proc. indb, 2010, 151–157.