An Approach on the Functional Properties of Mulberry Leaves Associated with Yeast (Saccharomyces cerevisiae) for Silkworm Bombyx mori Feeding

Authors

  • Mihaela Hăbeanu Research Station for Sericulture Baneasa Bucharest, 013685, Romania
  • Anca Gheorghe Research Station for Sericulture Baneasa Bucharest, 013685, Romania
  • Teodor Mihalcea Research Station for Sericulture Baneasa Bucharest, 013685, Romania

Keywords:

insects, mulberry leaves, probiotics, silkworm, yeast

Abstract

This paper explores the characteristics and associative impact of the compounds from mulberry leaves and yeast (S. cerevisae). Nutritional characteristics of the mulberry leaves, yeast properties and metabolism, as well as the effects on silkworms, were described. The online English databases used were MDPI, PubMed, Research Gate, Google Scholar, and Elsevier. The nutrition and health of silkworms B. mori depend on protein and amino acids, fats, vitamins, and minerals, all abundant in mulberry leaves. Furthermore, mulberry leaves contain bioactive phytochemicals offering health benefits. Many dietary supplements were investigated for their potential to enhance nutritional, technical, and health benefits, even though mulberry leaves are considered a complete feed for B. mori silkworm. Yeast is a good source of proteins, amino acids, fats, carbohydrates, minerals, and vitamins that can contribute to the fortification of mulberry leave characteristics. S. cerevisiae species also produce several secondary metabolites: polyketides, phenolics, alkaloids, and flavonoids. Numerous studies have demonstrated the positive effects of yeast dietary addition on economic indicators and health status in silkworm fifth instar. Yeast can act as a probiotic, release digestive enzymes and influence gut microbiota. Alterations in the gut microbiota improve immunological resistance and nutrition metabolism, ameliorating silkworm performances.

References

Muzamil, A., Tahir, H. M., Ali, A., Bhatti, M. F., Munir, F., Ijaz, F., Adnan, M., Khan, H. A., Qayyum, K. A., Effect of amino acid fortified mulberry leaves on economic and biological traits of Bombyx mori L., Heliyon, 2023, 9(10), E21053, doi.org/10.1016/j.heliyon.2023.e21053.

Jan, B., Parveen, R., Zahiruddin, S., Khan, M. U., Mohapatra, S., Ahmad, S., Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi Journal of Biological Science, 2021, 28 (7), 3909-3921. doi.org/10.1016/j.sjbs.2021.03.056.

Esaivani, C., Vasanthi, K., Bharathi, R., Chairman, K., Impact of probiotic saccharomyces cerevisiae on the enzymatic profile and the economic parameters of silkworm Bombyx mori L, Advances in Biology &BioMedicine, 2014, 1 (1).

Chuah, H. Q., Tang, P. L., Ang, N. J., Tan, H. Y. Submerged fermentation improves bioactivity of mulberry fruits and leaves, Chinese Herbal Medicines, 2021, 13, 4, 565-572.

Alam, K., Raviraj, V. S., Chowdhury, T., Bhuimali, A., Ghosh, P., Saha, S., Application of biotechnology in sericulture: Progress, scope and prospect, Nucleus, 2021, 65(1), 129–150, doi.org/10.1007/s13237-021-00355-2.

Masthan, K., Rajkumar,T., and Narasimhamurthy, C. V., Beneficial effects of blue green algae Spirulina and yeast Saccharomyces cerevisiae on cocoon quantitative parameters of silkworm,Bombyx mori L., Asian Journal of Microbiology,Biotechnology and Environmental Sciences, 2011, 13(1), 205 -208.

Taha, R. H., Soliman, S. A. and Kamel, H. M. Micro-Organisms Supplementation to Mulberry Silkworm, Bombyx mori L, Egyptian Academic Journal of Biological Sciences, 2017, 10(2), 57-64, ISSN 1687- 8809.

Anisha, S. P., Yasmin, N., Devi, E. S. V., Supplementation of mulberry leaves with probiotic bifilac on economic traits of silkworm (Bombyx mori), International Journal of Food Science and Nutrition, 2022, 11 (12), 86-90, e-ISSN 2320–7876 www.ijfans.org.

Amala, R. G.; Padmalatha, C., and Ranjith Singh, A. J. A., Probiotic supplementations to improve commercial characteristics, disease resistance and protein in the silkworm Bombyx mori L. World Journal of Biological Research, 2011, 4(2), 12-25.

Yadav, U., and Bagdi, A., Supplementary effect of yeast (Saccharomyces Cerevisiae) on rearing performance of Eri Silkworm (Philosamia Ricini) in respect of some larval parameter, Environmental Conservation Journal, 2016, 17(1&2) 95-98.

Tang, R., Zhang, F., Zhang, Z.N., Electrophysiological responses and reproductive behavior of fall webworm moths (hyphantria cunea drury) are influenced by volatile compounds from its mulberry host (Morus alba L.), Insects, 2016, 7, 19, doi:10.3390/insects7020019.

Tanaka, K., Uda, Y., Ono, Y., Nakagawa T., Suwa M., Yamaoka R., and Touhara K. Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile, Current Biology, 2009, 19, 881–890. doi.10.1016/j.cub.2009.04.035.

Hăbeanu, M., Gheorghe, A., Mihalcea T., Șapcaliu A., Savu, V., Măicănescu, M. Nutritive value, use and importance of mulberry leaf for the silkworm Bombyx mori L., Acta Agricola Romanica, 2023, 5, 5.3. 56-64.

Hosseini, A. S., Akramian, M., Khadivi, A., Arjmand, H. S., Phenotypic and chemical variation of black mulberry (Morus nigra) genotypes, Industrial Crop and Product, 2018, 117, 260–271.

Krishna, H., Singh, D., Singh, R. S., Kumar, L.; Sharma, B. D., Saroj, P. L. Morphological and antioxidant characteristics of mulberry (Morus spp.) genotypes, Journal of the Saudi Society of Agricultural Sciences, 2020, 19(2), 136-145. doi.org/10.1016/j.jssas.2018.08.002.

Alipanah, M., Abedian, Z., Nasiri, A., and Sarjamei, F., Nutritional Effects of Three Mulberry Varieties on Silkworms in Torbat Heydarieh, Psyche: A Journal of Entomology, 2020, 1-4. doi.org/10.1155/2020/6483427

Chundang, P., Thongprajukaew, K., Kovitvadhi, U., Chotimanothum, B., Kovitvadhi, A., Pakkong, P., Improving the nutritive value of mulberry leaves, Morus spp. (Rosales: Moraceae) for silkworm larvae, Bombyx mori (Lepidoptera: Bombycidae) using gamma irradiation, Journal of Radiation Research and Applied Science, 2020, 13, 1, 629–641, doi.org/10.1080/16878507.2020.1820268.

Al-Kirshi, R. A., Alimon, A., Zulkifli, I., Atefeh, S., Zahari, M. W., & Ivan, M. Nutrient digestibility of mulberry leaves (Morus alba). Italian Journal of Animal Science, 2013, 12, 219–221, doi.org/10.4081/ijas.2013.e36.

Raghuvanshi, T., Bali, R. K., and Bukhari, R., Effect of Different Feeding Frequencies on the Commercial Characters of Silkworm (Bombyx mori L.). International Journal of Current Microbiology and Applied Sciences, 2019, 8(6), 3193-3203.doi.org/10.20546/ijcmas.2019.806.381.

Sanchez-Salcedo, E. M., Amoros, A., Hernandez, F., Martinez, J. J., Physicochemical properties of white (Morus alba) and black (Morus nigra) mulberry leaves, a new food supplement. Journal of Food Nutrition and Research 2017, 5, 253–261.

Thaipitakwong, T., Numhom, S., & Aramwit, P., Mulberry leaves and their potential effects against cardiometabolic risks: a review of chemical compositions, biological properties and clinical efficacy, Pharmaceutical Biology, 2018, 56(1), 109-118, doi: 10.1080/13880209.2018.1424210.

Iqbal, S., Younas, U., Sirajuddin, Chan, K. W., Sarfraz, R.A., Uddin, K., Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.): A comparative study, International Journal of Molecular Sciences, 2012, 13, 6651–6664.

Adeduntan, S.A., Oyerinde, A. S., Evaluation of nutritional and antinutritional characteristics of obeche (Triplochition scleroxylon scleroxylon) and several mulberry (Morus alba) leaves, African Journal of Biochemistry Research, 2010, 4, 175–178.

Muzamil, A., Tahir, H. M., Ali, A., Bhatti, M. F., Munir, F., Ijaz, F., Adnan, M., Khan, H. A., Qayyum, K. A, Effect of amino acid fortified mulberry leaves on economic and biological traits of Bombyx mori L., Heliyon, 2023, 9 (10), e21053.

Alidee, T., Jales, M., Hjaij, N. D., and Almouna, A., Estimation of Some Phytochemical Compounds and Antioxidant Properties of Leaves from Different Mulberry Varieties Grown in Syria, Hindawi Evidence-Based Complementary and Alternative Medicine, 2023, 2023, 1-6, doi.org/10.1155/2023/9929276.

Kumar, D., Dev, P., and Kumar, R. V., Biomedical Applications of Silkworm Pupae Proteins. Biochemistry and Molecular Biology, Biomedical Applications of Natural Proteins., 2015, pp.41–49, (Chapter 3). doi:10.1007/978-81-322-2491-4_3.

Chang, B. Y., Koo, B-S., and Kim, S. Y., Pharmacological activities for Morus alba L., focusing on the immunostimulatory property from the fruit aqueous extract, 2021, 10, 1966. doi.org/10.3390/foods10081966.

Imran, M., Khan, H., Shah, M., Khan, R., Khan, F., Chemical composition and antioxidant activity of certain Morus species, 2010 11(12):973-980.

Dolis, M. G., Simeanu, C.., Usturoi, A., Simeanu, D., Research regarding chemical composition and the digestibility of the mulberry leaves from Eforie variety, Revista de Chimie (Bucharest), 2017, 68, 1. 151-156.

Doliș, M. G., Donose, R., Simeanu, C., Usturoi, A., Rațu, R., Research regarding chemical composition of the mulberry leaves from Kokuso 21 variety, Analele Universității din Oradea, Fascicula: Ecotoxicologie, Zootehnie și Tehnologii de Industrie Alimentară 2016, XV/A 207-212.

Doliș, M. G., Rațu, R. N., Study regarding the use of mulberry leaves (Kokuso 21variety) by Bombyx mori (Triumf hybrid), Lucrări Ştiinţifice – seria Agronomie, 2019, 62(1), 65-72.

Vu, C. C. , Verstegen, M. W. A., Hendriks, W. H. and Pham, K. C., The nutritive value of mulberry leaves (Morus alba) and partial replacement of cotton seed in rations on the performance of growing vietnamese cattle, Asian-Australian Journal of Animal Science, 2011, 24, 9, 1233 – 1242.

Srivastava, S., Kapoor, R., Thathola, A., and Srivastava R. P., Nutritional quality of leaves of some genotypes of mulberry (Morus alba). International Journal of Food Science and Nutrition, 2006, 57(5/6), 305313. doi: 10.1080/09637480600801837.

Kandylis, K., Hadjigeorgiou, I., Harizanis, P., The nutritive value of mulberry leaves (Morus alba) as a feed supplement for sheep, Tropical Animal Health and Production, 2009, 41,17–24, doi 10.1007/s11250-008-9149-y.

Yu, Y., Li, H., Zhang, B., Wang, J., Shi, X., Huang, J., Yang, J., Zhang, Y., & Deng , Z., Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials, International Journal of Food Properties, 2018, 1 (1), 1495-1507, doi:10.1080/10942912.2018.1489833.

Astuti, D. A., Becker, K., Richter, N., Energy and protein balance of Nile tilapia fed with moringa and mulberry leaves, Jurnal Pengolahan Hasil Perikanan Indonesia, 2012, 5(1).

Kang, K., Wang, R., Tang, S., Wang, M., Tan, Z., Bernard, L. A., Chemical composition and in vitro ruminal fermentation of pigeonpea and mulberry leaves, Agroforest Syst, 2019, doi.org/10.1007/s10457-019-00410-7.

Sahoo, A., Singh, B., Sharma, O. P., Evaluation of feeding value of Eupatorium adenophorum in combination with mulberry leave, Livestock Science, 2011, 136, 2–3, 175-183, https://doi.org/10.1016/j.livsci.2010.08.019.

Ustundag, A. O., Ozdoga, M., Usage possibilities of mulberry leaves in poultry nutrition, Scientific Papers. Series D. Animal Science, 2015, LVIII, 170-178.

Machii, H., and Katagiri, K., Varietal differences in nutritive values of mulberry leaves for rearing silkworms, Japan Agricultural Research Quarterly, 1991, 25, 202-208.

Machii, H., Koyama, A., Yamanouchi, H., Mulberry breeding, cultivation and utilization in Japan, FAO Electronic Conference on Mulberry for animal production (Morus 1-l), 2002. [accessed on January, 2024].

Yao, J., Yan, B., Wang, X.Q., and Liu, J. X., Nutritional evaluation of mulberry leaves as feed for ruminants. Livestock Researc Rural Development 2000, 12 (2). [Accessed on January, 2024].

Olteanu M., Criste, R. D., Cornescu, G. M., Ropota M., Panaite, T., Varzaru, I., Effect of dietary mulberry (Morus alba) leaves on performance parameters and quality of breast meat of broilers, Indian Journal of Animal Science, 2015, 85 (3), 291–295.

Wang, C., Yang, F., Wang, Q., Zhou, X., Xie, M., Kang, P., Wang, Y., Peng, X., Nutritive value of mulberry leaf meal and its effect on the performance of 35-70-day-old geese, Journal of Poultry Sciences, 2017, 54, 41-46.

Al-kirshi, R. A., Alimon, A. R., Zulkifli, I., Zahari, M. W., and Sazil, A. Q., The chemical composition and nutritive value of mulberry leaf as a protein source in poultry diets. The 1st International Seminar on Animal Industry, Feed and Nutrition 2009, 98-102. [accesed on January 25, 2024].

Adeduntan, S. A., and Oyerinde, A. S., Evaluation of chemical and antinutritional characteristics of obeche (Triplochition scleroxylon) and some mulberry (Morus alba) leaves, International Journal of Biological and Chemical Science, 2009, 3(4), 681-687.

Bamikole, M.A., Iknatua, M.I., Iknatua, U.J., Ezenwa, I.V., Nutritive value of mulberry (Morus spp) leaves in the growing rabbits in Nigeria, Pakistan Journal of Nutrition, 2005, 4(4), 231-236.

www.feedipedia.org [Accessed on January, 2024].

Gao, L., Li, Y.-D., Zhu, B.-K., Li, Z.-Y., Huang, L.-B., Li, X.-Y., Wang, F., Ren, F.,-C., Liao, T.-G. Two new prenylflavonoids from Morus alba. Journal of Asian Natural Products Research, 2017, 1–5. doi:10.1080/10286020.2017.1343303.

Sharma, S.B., Tanwar, R.S., Rini, A.C., Singh, U.R., Gupta, S., and Shukla, S.K., Protective effect of Morus rubra L. leaf extract on diet-induced atherosclerosis in diabetic rats, Indian Journal of Biochemistry and Biophysic, 2010, 47: 26-31.

Andallu, B., Varadacharyulu, N. Ch., Control of hyperglycemia and retardation of cataract by mulberry (Morus indica L.) leaves in streptozotocin diabetic rats, Indian Journal of Experimental Biology., 2002, 40(7), 791-5. PMID: 12597548.

Arfan, M., Khan, R., Rybarczyk, A., and Amarowicz, R., Antioxidant activity of mulberry fruit extracts, International Journal of Molecular Sciences, 2012, 13, 2472-2480. doi:10.3390/ijms13022472.

Ostergaard, S., Olsson, L., and Nielsen, J., Metabolic Engineering of Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, 2000, 64(1), 34–50.

Rincon, A. M., and Benıtez, T., Improved organoleptic and nutritive properties of bakery products supplemented with amino acid overproducing Saccharomyces cerevisiae yeasts, Journal of Agriculture and Food Chemistry, 2001, 49,1861–1866.

Heitmann, M., Zannini, E., & Arendt, E., Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review, Critical Review in Food Science and Nutrition, 2018, 58, 7, 1152–1164, doi.org/10.1080/10408398.2016.1244153.

Jahangeer, M., Riasat, A., Mahmood, Z., Numan, M., Munir, N., Ashiq, M., Asad, M., Ali, U., and Salman, M., Secondary Metabolites from Saccharomyces cerevisiae Species with Anticancer Potential, Saccharomyces, Intech Open, 2021, doi: 10.5772/intechopen.95067.

https://onlinelibrary.wiley.com/doi/10.1002/9783527659180.ch3. Book Editor(s): Horst Feldmann, Yeast Metabolism, Yeast, 2012. 25–58. Yeast: Molecular and Cell Biology, Second Edition. Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA. Chapter 3. doi:10.1002/9783527659180.ch3. [Accessed on March 2024].

Bradley, P. H., Brauer, Matthew, J. Rabinowitz, J. D., Troyanskaya, O. G., Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae, PLoS Computational Biology, 2009, 5, 1, e1000270.

Chrzanowsk, G., Saccharomyces Cerevisiae—an interesting producer of bioactive plant polyphenolic metabolites, International Journal of Molecular Science, 2020, 21, 7343; doi:10.3390/ijms21197343.

Pronk, K. T., Steensmays, H. Y., Van Dijkent, J. P., Pyruvate Metabolism in Saccharomyces cerevisiae, yeast, 1996, 12, 1607-1633.

Jouhten, P., Ponomarova, O., Gonzalez, R. and Patil, K. R., Saccharomyces cerevisiae metabolism in ecological context, FEMS Yeast Research, 2016, 16, fow080, doi: 10.1093/femsyr/fow080.

Goddard, M. R., Greig, D., Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Research, 2015,15, fov009.

Moustafa, M. N., and Soliman, S. A., Nutritional efficiency and economic traits of silkworm Bombyx mori, l. reared on mulberry leaves fortified with synbiotics, Journal of Plant Protection and Pathology, 2019, 10 (12), 671-675, doi: 10.21608/jppp.2019.79460.

Abdelmegeed, S. M., Biological and Physiological Effects on Mulberry Silkworm Fed on Mulberry Leaves Treated with Yeast and Soybean, Journal of Plant Protection and Pathology, 2020, 11(7), 349-351, doi: 0.21608/jppp.2020.108895.

Shruti, Ashoka, J., Hadimani, D. K., Sreeniva,s A. G., and Beladhadi, R. V., Effect of probiotic feed supplements to mulberry silkworm, Bombyx mori L. for larval growth and development parameters, International Journal of Chemical Studie, 2019; 7(3), 3914-3919.

Soliman, A. M., The Impact of Fortification of Mulberry Leaves with the Yeast Saccharomyces cerevisiae and the Blue Green Algae Spirulina platensis on some Quantitative Parameters of Silkworm Bombyx mori (L.), Journal of Plant Protection and Pathology, 2021, 12 (1), 55 - 59, doi: 10.21608/jppp.2021.58388.1011.

Savio, C., Mugo-Kamiri, L., and Upfold J. K., The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects, Insects, 2022, 13, 376. doi.org/10.3390/ insects13040376.

Barretto, D. A., Gadwala, M., Vootla, S. K., The silkworm gut microbiota: A potential source for biotechnological applications, Methods in Silkworm Microbiology, 2021, 1-26, doi:10.1016/bs.mim.2021.04.001.

Arasakumar, V., Vasanth, E., Vijay, S., and Swathiga, G., Role of microorganisms in the gut of silkworms, The Pharma Innovation Journal, 2023, 12(4), 2691-2696.

Czerucka, D., Piche, T., & Rampal, P., Review article: yeast as probiotics – Saccharomyces boulardii, Alimentary Pharmacology & Therapeutics, 2007, 26, 767–778. doi:10.1111/j.1365-2036.2007.03442.x.

Staniszewski, A., Kordowska-Wiater, M., Probiotic and potentially probiotic yeasts— characteristics and food application, Foods, 2021, 10, 1306. doi.org/ 10.3390/foods10061306

Yuan, S., Sun, Y., Chang, W., Zhang, J., Sang, J., Zhao, J., Song, M., Qiao, Y., Zhang, C., Zhu, M., Tang, Y., & Lou, H., The silkworm (Bombyx mori) gut microbiota is involved in metabolic detoxification by glucosylation of plant toxins, Communications Biology, 2023, 6, 790 doi.org/10.1038/s42003-023-05150-0.

Downloads

Published

2024-05-30