Probiotics Supplementation to Mulberry Silkworm B. mori


  • Anca Gheorghe Research Station for Sericulture Băneasa, 013685-Bucharest, Romania
  • Mihaela Hăbeanu Research Station for Sericulture Băneasa, 013685-Bucharest, Romania
  • Teodor Mihalcea Research Station for Sericulture Băneasa, 013685-Bucharest, Romania
  • Georgeta Diniţă University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464, Romania
  • Adela R. Moise University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 400372, Romania


B. mori, gut microbiota, probiotics, performance, health


This paper evaluates the importance, characteristics, mechanisms, and effects of probiotics added to silkworm B. mori feed. Scientific databases (PubMed, Science Direct, Google Scholar, MDPI, Elsevier) were screened. We are searching for alternative solutions to improve the nutritional quality of the mulberry leaves. Probiotics present properties such as non-pathogenetic or non-toxicity, adhere to epithelial cells, can be reproduced, stimulate immune response, have a positive influence on the host, can survive in intestinal mucosal surface, etc., and perform various functions that recommend them as natural feed supplements in silkworm nutrition. Lactobacillus, Bifidobacterium, Bacillus, Streptococcus, and Saccharomyces species are the most evaluated probiotics used in insects. In addition to producing lactic acid, probiotics also lower intestinal pH, inhibit pathogen populations, alleviate inflammation in the gut, boost immunity, and improve overall intestinal health. Silkworm gut contains various bacterial phylotypes (Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes) that are crucial in nutrients metabolism and exhibit metabolites and enzymes indispensable for growth. This review highlighted that supplementing mulberry leaves with probiotics represents an eco-friendly strategy to improve the silkworm's performance, economic traits, and health.


Yeruva, T., Vankadara, S., Ramasamy, S., Lingaiah, K., Identification of potential probiotics in the midgut of mulberry silkworm, Bombyx Mori through metagenomic approach, Probiotics Antimicrobial Proteins, 2020, 12, 635–640.

Hassan, E. M., Comparative study on effects of some high protein content nutritional additives on some hybrids of mulberry silkworm, Bombyx mori L., Journal of Plant Protection and Pathology, 2020, 11(8), 403-410.

Saviane, A., Toso, L., Righi, C., Pavanello, C., Crivellaro, V., and Cappellozza, S., Rearing of monovoltine strains of Bombyx mori by alternating artificial diet and mulberry leaf accelerates selection for higher food conversion efficiency and silk productivity, Bulletin of Insectology, 2014, 67(2), 167–174.

Zhang, Z. J., Zhang, S. S., Niu, B. L., Ji, D. F., Liu, X. J., Li, M. W., Bai, H, Palli, S. R., Wang, C.Z., and Tan, A.J., A determining factor for insect feeding preference in the silkworm, Bombyx mori, PLOS Biology, 2019, 17:e300016.

Ayandokun, A. E., and Alamu, O. T., Cocoon production efficiency of silkworm (Bombyx mori L.) in response to host shift between two selected mulberry varieties, International Journal of Tropical Insect Science, 2020, 40, 49–52.

Hassan, S. I, Rateb, S. H., K. M. Mohanny, and Hussein. M. H., Efficiency of some plants powder mix as a dietary supplement for silkworm (Bombyx mori L.), SVU-International Journal of Agricultural Science, 2020, 2(2), 378–383.

Savio, C., Mugo-Kamiri, L., Upfold, J. K., Bugs in Bugs: The role of probiotics and prebiotics in the maintenance of health in mass-reared insects, Insects 2022, 13, 376.

Food and Agricultural Organization of the United Nations; World Health Organization. Probiotics in Food-Health and Nutritional Properties and Guidelines for Evaluation; Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agricultural Organization of the United Nations: Rome, Italy, 2002, Volume 85, Available online: (accessed on 15 January 2024)

Priyadharshini, P., Swathiga, G., Maria Joncy, A., and Thangamalar, A., Probiotics and its role in silkworm growth and development, Just Agriculture, 2021, 2(2)

Bermudez-Brito, M., Diaz, J. P., Quezada, S. M., Lorente, C. G., and Gil, A., Probiotic mechanisms of action, Annal of Nutrition and Metabolism, 2012, 61, 160–174.

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components, European Journal of Nutrition, 2018, 57, 1–24.

Liang, X., Fu, Y., Liu, H., Isolation and characterization of enzyme-producing bacteria of the silkworm larval gut in bioregenerative life support system, Acta Astronautica, 2015, 116, 247–253.

Guarner, F., Sanders, M. E., Eliakim, R., Garisch, J., Gangl, A., Thomson, A., and Kim, N., Probiotics and Prebiotics. World Gastroenterology Organization Probiotics and Prebiotics Guidelines. 2017. Available online:

guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english (accessed on 14 January 2024).

Gaspar, F., Teixeira, N., Rigottier-Gois, L., Marujo, P., Nielsen-LeRoux, C., Crespo, M. T. B., Lopes, M. d. F. S., and Serror, V., Virulence of Enterococcus faecalis dairy strains in an insect model: The role of FsrB and GelE, Microbiology, 2009, 155, 3564–3571.

Nishida, S., Nishiya, Y., Abe, S., Ono, Y., and Sekimizu, K., Lactobacillus paraplantarum 11–1 isolate from rice bran pickles activated innate immunity and improved survival in a silkworm bacterial infection model, Frontiers Microbiology, 2017, 8, 1–8.

Hamdi, C., Balloi, A., Essanaa, J., Crotti, E., Gonella, E., Raddadi, N., Ricci, I., Boudabous, A., Borin, S., Manino, A., Bandi, C., Alma, A., Dafonchio, D., and Cherif A., Gut microbiome dysbiosis and honey bee health, Journal of Applied Entomology, 2011, 135, 524–533.

Khalighi, A., Behdani, R., and Kouhestani, S., Probiotics: A comprehensive review of their classification, mode of action and role in human nutrition, InTech. 2016

Saha, S., Fukuyama, K., Debnath, M., Namai, F., Nishiyama, K., and Kitazawa, H., Recent advances in the use of probiotics to improve meat quality of small ruminants: A review, Microorganisms 2023, 11, 1652.

Esaivani, C., Vasanthi, K., Bharathi, R., Chairman, K., Impact of probiotic Saccharomyces cerevisiae on the enzymatic profile and the economic parameters of silkworm Bombyx mori L., Advances in Biology & BioMedicine, 2014, 1(1), 1-7.

Pandiarajan, J., and Krishnan, M. Comparative bacterial survey in the gut of lepidopteran insects with different bionetwork, Microbiology, 2018, 87(1), 103-115.

Kalpana, S., Hatha, A. A. M., Lakshmanaperumalsamy, P., Gut microflora of the larva of silkworm, Bombyx mori, International Journal of Tropical Insect Science, 1994, 15(4–5), 499–502.

Hui, X., Muwang, L., Yong, Z., Liping, Z., Yuehua, Z., and Yongping, H., Bacterial community in midguts of the silkworm larvae estimated by PCR/DGGE and 16S rDNA gene library analysis, Acta Entomologica Sinica, 2010, 50(3), 222–233.

Subramanian, S., Gadhave, K. R., Mohanraj, P., and Thangamalar, A., Use of 16S rRNA probes for characterization of gut microflora of silkworm (Bombyx mori L.) breeds, Karnataka Journal of Agricultural Sciences, 2010, 22(3), 476–478.

Prem Anand, A. A., Vennison, S. J., Sankar, S. G., Gilwax Prabhu, D. I., Vasan, P. T., Raghuraman, T., et al., Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion, Journal of Insect Science, 2010, 10(1), 107.

Khyade, V. B., Marathe, R. J. Diversity of bacterial flora in the mid gut of fifth instar larvae of silkworm, Bombyx mori (L.) (RACE: PM X CSR2), International Journal of Science and Nature, 2012, 3(4), 905–914.

Li, S., Zhang, J., Liu, L., Su, J., Song, Y., Xu, Y., The composition of gut microbiota in two strains of silkworms with different susceptibilities to bacterial diseases, BMC Microbiology, 2020, 20(1), 1-12.

Saranya, M., Krishnamoorthy, S. V., Balachandar, D., Tilak, M., Isolation and characterization of indigenous probiotic bacteria from silkworm (Bombyx mori L.) gut, International Journal of Current Microbiology and Applied Sciences, 2019, 8(9), 2869–2874.

Sun, B. F., Xiao, J. H., He, S. M., Liu, L., Murphy, R. W., Huang, D. W., Multiple ancient horizontal gene transfers and duplications in lepidopteran species, Insect Molecular Biology, 2013, 22(1), 72–87.

Li, G. N., Xia, X. J., Zhao, H. H., Sendegeya, P., Zhu, Y., Identification and characterization of Bacillus cereus SW7-1 in Bombyx mori (Lepidoptera: Bombycidae), Journal of Insect Science, 2015, 15(1), 136.

Sun, Z., Lu, Y., Zhang, H., Kumar, D., Liu, B., Gong, Y., et al. Effects of BmCPV infection on silkworm Bombyx mori intestinal bacteria, PLoS One, 2016, 11(1), e0146313.

Dee Tan, I. Y., Bautista, M. A. M., Bacterial survey in the guts of domestic silkworms, Bombyx mori L. Insects 2022, 13, 100.

Chen, B., Yu, T., Xie, S., Du, K., Liang, X., Lan, Y., et al., Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome, Scientific Data, 2018, 5(1), 1–10.

Mwchahary, H., Dulur Brahma, D., Microbial partnerships in sericulture: A review on the gut bacteria of silkworms, 2023, International Journal of Entomology Research, 8(6), 44-49.

Barretto, D. A., Avchar, R., Carvalho, C., Sampaio, J. P., Vootla, S. K., Baghela, A. Blastobotrys bombycis sp. nov., a D-xylose-fermenting yeast isolated from the gut of the silkworm larva Bombyx mori, International Journal of Systematic and Evolutionary Microbiology, 2018, 68(8), 2638–2643.

Barretto, D. A., Vootla, S. K., Biological activities of melanin pigment extracted from Bombyx mori gut-associated yeast Cryptococcus rajasthanensis KY627764, World Journal of Microbiology and Biotechnology, 2020, 36, 159.

Barretto, D. A., Gadwala, M., Vootla, S. K., The silkworm gut microbiota: A potential source for biotechnological applications, Methods in Silkworm Microbiology, 2021, 1-26.

Qi, W., Liu, J., Yu, T., Huang, S., Song, R., Qiao, Z., Ae1/Sbe1 maize-derived high amylose improves gut barrier function and ameliorates type II diabetes in high-fat diet-fed mice by increasing Akkermansia. Frontiers in Nutrition, 2022, 9, 999020

Unban, K., Klongklaew, A., Kodchasee, P., Pamueangmun, P., Shetty, K., Khanongnuch, C., Enterococci as dominant xylose utilizing lactic acid bacteria in Eri silkworm midgut and the potential use of Enterococcus hirae as probiotic for Eri culture, Insects 2022, 13, 136.

Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M., Fatouros, N. E., Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host, Frontiers Microbiology, 2018, 9, 556.

Taha, R. H., Kamel, H. M., Microorganisms Supplementation to mulberry silkworm, Bombyx Mori, L. Egyptian Academic Journal of Biological Sciences, 2017, 10, 57–64.

Sun, Z., Kumar, D., Cao, G., Zhu, L., Liu, B., Zhu, M., Liang, Z., Kuang, S., Chen, F., Feng, Y., et al., Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori, Scientific Reports 2017, 7, 3349.

Liu, R., Wang, W., Liu, X., Lu, Y., Xiang, T., Zhou, W, et al., Characterization of a lipase from the silkworm intestinal bacterium Bacillus pumilus with antiviral activity against Bombyx mori (Lepidoptera: Bombycidae) nucleopolyhedrovirus in vitro, Journal of Insect Science, 2018, 18(6), 3.

Liang, X., Sun, C., Chen, B., Du, K., Yu, T., Luang, In V., et al., Insect symbionts as valuable grist for the biotechnological mill: An alkaliphilic silkworm gut bacterium for efficient lactic acid production, Applied Microbiology and Biotechnology, 2018, 102, 4951-4962.

Singh, K. K., Chauhan, R. M., Pande, A. B., Gokhale, S. B., Hegde, N. G., Effect of use of Lactobacillus plantarum as a probiotics to improve cocoon production of mulberry silkworm Bombyx mori (L.), Journal of Basic & Applied Sciences, 2005, 1, 1–8.

Suraporn, S., Sangsuk, W., Chanhan, P., and Promma, S., Effects of probiotic bacteria on the growth parameters of the Thai silkworm, Bombyx mori, Thai J. Agric. Sci. 2015, 48, 29–33.

Suraporn, S., Terenius, O., Supplementation of Lactobacillus casei reduces the mortality of Bombyx mori larvae challenged by Nosema bombycis, BMC Res. Notes, 2021, 14, 398.

Li, G., Zheng, X., Zhu, Y., Long, Y., Xia, X., Bacillus symbiont drives alterations in intestinal microbiota and circulating metabolites of lepidopteran host, Environmental Microbiology, 2022, 24(9), 4049-4064.

Pandiarajan, J., Revathy, K., Cellulolytic potential of gut bacterial biomass in silkworm Bombyx mori L., Ecological Genetics and Genomics, 2020, 14, 100045.

Prasanna, V. A., Kayalvizhi, N., Ramesh Kumar, N., Suganya, T., Krishnan, M., Characterization of amylase producing Bacillus megaterium from the gut microbiota of silkworm Bombyx mori, Research Journal of Chemistry and Environment, 2014, 18(7), 38-45.

Mala, M., Vijila, K. Beneficial effects of Bacillus licheniformis and Bacillus niabensis on growth and economic characteristics of silkworm, Bombyx mori L. IJCS, 2018, 6(2), 1750–1754.

Feng, W., Wang, X. Q., Zhou, W., Liu, G. Y., Wan, Y.J. Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage, Journal of Insect Science, 2011, 11(1), 135.

Sun, Z., Lu, Y., Zhang, H., Kumar, D., Liu, B., Gong, Y, et al., Effects of BmCPV infection on silkworm Bombyx mori intestinal bacteria, PLoS One, 2016, 11(1), e0146313.

Liang, X., He, J., Zhang, N., Muhammad, A., Lu, X., Shao, Y., Probiotic potentials of the silkworm gut symbiont Enterococcus casseliflavus ECB140, a promising L-tryptophan producer living inside the host, Journal of Applied Microbiology, 2022, 133(3), 1620-1635.

Zhang, X., Feng, H., He, J., Liang, X., Zhang, N., Shao, Y., et al., The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori, Pest Management Science, 2022, 78(6), 2215-2227.

Gibson, C. M., Hunter, M. S., Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett, 2010, 13(2), 223-234.

Mohanraj, P., and Subramanian, S., Antibacterial activity of gut flora isolates from mulberry silkworm Bombyx mori, International Journal of Environmental Science, 2014, 1, 267-270.

Ramesh, G. K., Thangamalar, A., Muthuswami, M., Subramanian, S., Characterisation of gram-negative bacterial isolates from guts of few multivoltine silkworm breeds, Karnataka Journal of Agricultural Science, 2009, 22(3).

Moustafa, M. N., Soliman, S., Nutritional efficiency and economic traits of silkworm Bombyx mori, L. reared on mulberry leaves fortified with synbiotics, Journal of Plant Protection and Pathology, 2019, 10, 671–675.

Masthan, K., Rajkumar, T., Narasimhamurthy, C. V., Beneficial effects of blue green algae Spirulina and yeast Saccharomyces cerevisiae on cocoon quantitative parameters of silkworm, Bombyx mori L., Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 2011, 13(1), 205-208.

Sekar, P., Kalpana, S., Ganga, S., John, G., Kannadasan, N., Effect of the probionts to the enhancement of silk proteins (sericin and fribroin) in the silk gland and cocoons of silkworm (LxCSR2) Bombyx mori (L.), International Journal of Pharmacy and Biological Sciences, 2016, 11, 19–25.

Rajakumari, D. V. S., Padmalatha, C., Das, S. S. M., Ranjitsingh, A. J. A., Efficacy of probiotic and neutraceutical feed supplements against flacherie disease in mulberry silkworm, Bombyx Mori, L. Indian Journal of Sericulture, 2007, 46, 179–182.