Nutraceuticals: the Link Between Lifestyle and Medicine A review
Keywords:
nutraceuticals, bioactive compounds, therapeutic effect, pathologiesAbstract
Numerous studies have reported positive associations between certain biologically active compounds, with pharmacological properties, such as nutraceuticals, contained in some foods and various pathologies. The term "nutraceutical" currently varies from country to country, referring to a number of valuable molecules, derived from organic sources (plants) or foods such as polyphenols, essential amino acids, antioxidants, soluble fiber, polyunsaturated fatty acids ( PUFA), prebiotics, prebiotics, which act at the cellular level, in combating oxidative stress and inflammatory processes and / or in altering the expression of some genes. The discovery of the many benefits attributed to these products and the ever-changing lifestyle have contributed to increasing consumer confidence in nutraceutical and functional foods around the world, and there is a growing interest in improving the quality of life and adopting a healthy lifestyle. to prevent or reduce the risk of disease. Based on these considerations, this paper aims to review some scientific evidence obtained from in vitro / in vivo studies, which supports the beneficial effects of some nutraceuticals and their medical implications in various pathologies.
References
ENA (European Nutraceutical Association). 2016.
FDA, Dietary supplements. Documents containing guidelines and legal information. 2019.
Mishra, S., Behera,P.K., Kar, B., Ray, R.C., Advances in Probiotics, Prebiotics and Nutraceuticals, , Innovations in Technologies for Fermented Food and Beverage Industries, Food Microbiology and Food Safety, 2018. p. 120-141.
Kalra, E.K., Nutraceutical--definition and introduction. AAPS PharmSci., 2003. 5.
Kosiorek, A., Oszmiański, J., Golański, J., Podstawy do zastosowania polifenoli roślinnych jako nutraceutyków o właściwościach przeciwpłytkowych [Rationale for the use of plant polyphenols as antiplatelet nutraceuticals]. Post. Fitoter., 2013. 2: p. 108–117.
Nwosu, O., Ubaoji, K.I., Nutraceuticals: History, Classification and Market Demand, DOI: 10.1007/978-3-030-42319-3_2. 2020.
Uranga, J.A., López-Miranda, V., Lombó, F., Abalo, R., Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol Rep., 2016. 68: p. 816-826.
Larussa, T., Imeneo, M., Luzza, F., Potential role of nutraceutical compounds in inflammatory bowel disease, World Journal of Gastroenterol, 2017. 23(14): p. 2483-2492.
Krochmal-Marczak, B., Sawicka, B., Stryjecka, M., Pisarek, M., Wartość odżywczai pro-zdrowotna wybranych warzyw z rodzaju kapusta (Brassica L.) [Nutritional and health bene-fits of selected vegetable species of the genus (Brassica L.)], Herbalism, 2017. 3(1): p. 71–79.
Sharifi-Rad, J., Carretero, A.S., Salehi, B., Krochmal-Marczak, B., Skiba, D., Ceylan, D., Coy-Barrera, E., Capanoglu, E., Bhatt, I., Sarac, I., Singh, L., Kmale, M., Kadyks-Gurrea, M.L., El Jeml,i M., Butnariu ,M., Kumar, P., Kamiloglu, S., Tripathi, V., El Jemli, Y, Bouyahya, A., Sawicka, B., Marmouzi, I., Brassica plants – from farm to food applications and phytothera-py. A Review. Trends Food Sci. Technol. 2019.
Ernst, E., Functional foods, nutraceuticals, designer foods: innocent fad or counterproductive marketing ploy, Eur J Clin Pharmacol., 2001. 57: p. 353–355.
Audrey, M., Barnett, A., Burrows, O.J., Effect of Processing on Nutrient Content of Foods. Cajanus, 2004. 37(3): p. 160–164.
Thakur, N., Gupta, B.P., Nagariya, A.K., Jain, N.P., Banwee,r J., Jain, S., Nutraceutical: New Era’s safe pharmaceuticals, J. Pharm Res., 2010. 3: p. 1243–1247.
Błecha, K., Wawer, I., Żywność funkcjonalna: żywność wzbogacona, suplementy diety i środki spożywcze specjalnego przeznaczenia żywieniowego. Profilaktyka Zdrowotna i Fito-terapia Bonimed, Żywiec, 2011. p. 13–16.
Sakthinathan, B., Nandhini, U.D., Phytochemicals – A Nutraceutical Source of Vegetables. Chem. Sci. Rev. Lett., 2017. 6(24): p. 2133–2137.
Sawicka, B., Ziarati, P., Krochmal-Marczak, B., Skiba, D., Nutraceuticals in food and pharmacy. A Review, Journal of Agronomy, 2020. 74(4).
Ciepłucha, K., Nutraceutyki, Panacea, 2004. 2(7): p. 11–13.
Prabu, L.S., Prakash, T.N.K., Kumar, C.D., Kumar, S.S., Ragavendran T., Nutraceuticals: A review. Eliksir Pharm., 2012. 46: p. 8372–8377.
Bagchi, D., Nair, S., Development of new functional food and nutritional products, 1st ed. Academic Press, 2016. p. 544.
Santini, A., Cammarata, S.M., Capone, G., Ianaro, A., Tenore, G.C., Pani, L., Novellino, E., Nutraceuticals: opening the debate on the regulatory framework. Br. J. Clin. Pharma-col., 2018. 84(4): p. 659–672.
Weaver, C.M., Alekel, D.L., Ward, W.E., Ronis, M.J., Flavonoid intake and bone health, J. Nutr. Gerontol. Geriatr., 2012. 31: p. 239–53.
Trziszka, T., Cichocka, A., Nutraceutyki i ich znaczenie w żywieniu człowieka [Nutraceuti-cals and their importance in human nutrition]. III Kongres Nauk Rolniczych[IIICongressofAgriculturalSciences],Wrocław, 2018.
Ronis, M.J., Pedersen, K.B., Watt, J., Adverse Effects Of Nutraceuticals And Dietary Supplements, Annu Rev Pharmacol Toxicol., 2018. 58: p. 583–601.
Chauhan, B., Kumar, G., Kalam, N., Ansari, S.H., Current concepts and prospects of herbal nutraceutical: A review. J Adv Pharm Technol Res., 2013. 4: p. 4-8.
World Health Organization, A global brief on hypertension: Silent killer, global public health crisi, 2013.
Zuchi, C., Ambrosio, G., Lüscher, T.F., Landmesser, U., 2010, Nutraceuticals in cardiovascular prevention: Lessons from studies on endothelial function. Cardiovasc Ther., 2010. 28: p. 187-201.
Alves, Q.L., Camargo, S.B., Silva, D.F., Role of Nutraceuticals in the Prevention and Treatment of Hypertension and Cardiovascular Diseases, J Hypertens Manag., 2019. 5(1): p. 1-10.
Rasines-Perea, Z., Teissedre, P.L., Grape polyphenols’effects in human cardiovascular diseases and diabetes, Molecules, 2017. 22, E68.
Kandaswami, C., Middleton, E., Free radical scavenging and antioxidant activity of plant flavonoids, Adv Exp Med Biol., 1994. 366: p. 351-376.
Middleton, E., Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol., 1998. 439: p. 175-182.
Geleijnse, J.M., Launer, L.J., van der Kuip, D.A., Hofman, A., Witteman, J., Inverse association of tea and flavonoid intakes with incident myocardial infarction: The Rotterdam study. Am J Clin Nutr., 2002. 75: p. 880-886.
Mahn, K., Borrás, C., Knock, G.A., Taylor, P., Khan, I.Y., et al., Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo, Faseb J., 2005. 19: p. 1755-1757.
Agarwal, S., Rao, A.V., Tomato lycopene and its role in human health and chronic diseases. CMAJ., 2000. 163: p. 739-744.
Cruz, R.B., González, J.G., Sánchez, P.C., Functional properties and health benefits of lycopene. Nutr Hosp., 2013. 28: p. 6-15.
Jacques, P.F., Lyass, A., Massaro, J.M., Vasan, R.S., D’Agostino, R.B., Relationship of lycopene intake and consumption of tomato products to incident CVD. British Journal of Nutrition., 2013. 110: p. 545-551.
Wolak, T., Paran, E., Can carotenoids attenuate vascular aging? Vascul Pharmacol., 2013. 59: p. 63-66.
Tsuda, T., Shiga, K., Ohshima, K., et al., Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochemical Pharmacol., 1996. 52(7): p. 1033–1039.
Tsuda, T., Horio, F., Uchida, K., et al., Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr., 2003. 133(7): p. 2125–2130.
Jayaprakasam, B., Olson, L.K., Schutzki, R.E., et al., Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem., 2006. 54(1): p. 243–248.
Kim, S.M., Chung, M.J., Ha, T.J., et al., Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1–JNK/p38 pathways and mobilization of cellular sialic acids, Life Sci., 2012. 90(21): p. 874–882.
Tarozzi, A., Morroni, F., Hrelia, S., et al., Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci Lett., 2007. 424(1): p. 36–40.
Min, J., Yu, S.W., Baek, S.H., et al., Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci Lett., 2011. 500(3): p. 157–161.
Khoo, H.E., Azlan, A.,Tang, S.T., Lim, S.M., Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits, Food & Nutrition Research, 2017. 6: p. 1361779.
Wang, L.S, Hecht, S.S., Carmella, S.G., et al., Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev Res., 2009. 2(1): p. 84–93.
Lim, S., Xu, J., Kim, J., et al., Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol Nutr Food Res., 2013. 57(11): p. 1908– 1917.
Hui, C., Bin, Y., Xiaoping, Y., et al., Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo. Nutr Cancer, 2010. 62(8): p. 1128–1136.
Cushnie, T.P.T., Lamb, A.J., Antimicrobial activity of flavonoids. Int J Antimicrob Agents., 2005. 26(5): p. 343–356.
Iturriaga, L., Olabarrieta, I., De Marañón, I.M., Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. Int J Food Microbiol., 2012. 158(1): p. 58–64.
Genskowsky, E., Puente, L.A., Perez-Alvarez, J.A., et al., Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis(Molina) Stuntz] a Chilean blackberry. J Sci Food Agr., 2016. 96(12): p. 4235–4242.
Côté, J., Caillet, S., Doyon, G., et al., Antimicrobial effect of cranberry juice and extracts. Food Cont., 2011. 22(8): p. 1413–1418.
Helander, I.M., Alakomi, H.L., Latva-Kala, K., et al., Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem., 1998. 46(9): p. 3590–3595.
Puupponen-Pimiä, R., Nohynek, .L, Meier, C., et al., Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol., 2001. 90(4): p. 494–507.
Cohen, S., Nathan, J.A., Goldberg, A.L. (2015). MuscleWasting in Disease: Molecular Mechanisms and Promising Therapies. Nat. Rev.Drug Discov. , 14, 58–74.
Mirzoev, T.M. (2020). Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling Andstrategies for Accelerating Muscle Regrowth. Int. J. Mol. Sci., 21, 7940.
Sartori, R..; Romanello, V.; Sandri, M. (2021). Mechanisms of Muscle Atrophy and Hypertrophy: Implications in Health and Disease. Nat. Commun., 12, 330.
Kim, C.; Hwang, J.K. (2020). Flavonoids: Nutraceutical Potential for Counteracting Muscle Atrophy. Food Sci. Biotechnol., 29, 1619–1640.
Salucci, S.; Falcieri, E. (2020). Polyphenols and Their Potential Role in Preventing Skeletal Muscle Atrophy. Nutr. Res., 74, 10–22.
De Vasconcelos, D.A.A.; Giesbertz, P.; de Souza, D.R.; Vitzel, K.F.; Abreu, P.; Marzuca-Nassr, G.N.; Fortes, M.A.S.; Murata, G.M.; Hirabara, S.M.; Curi, R. (2019). Oral L-Glutamine Pretreatment Attenuates Skeletal Muscle Atrophy Induced by 24-h Fasting in Mice. J. Nutr. Biochem., 70, 202–214.
Sun, L.; Miyaji, N.; Yang, M.; Mills, E.M.; Taniyama, S.; Uchida, T.; Nikawa, T.; Li, J.; Shi, J.; Tachibana, K. (2021). Astaxanthin Prevents Atrophy in Slow Muscle Fibers by Inhibiting Mitochondrial Reactive Oxygen Species via a Mitochondria-Mediated Apoptosis Pathway. Nutrients, 13, 379.
Li, W.; Chen, H.Q.;Wang, H.; Mei,W.L.; Dai, H.F. (2021). Natural Products in Agarwood and Aquilaria Plants: Chemistry, Biological Activities and Biosynthesis. Nat. Prod. Rep., 38, 528–565.
Choi, W.H.; Son, H.J.; Jang, Y.J.; Ahn, J.; Jung, C.H.; Ha, T.Y. (2017). Apigenin Ameliorates the Obesity-Induced Skeletal Muscle Atrophy by Attenuating Mitochondrial Dysfunction in the Muscle of Obese Mice. Mol. Nutr. Food Res., 61, 1700218.
Le, N.H.; Kim, C.S.; Park, T.; Park, J.H.; Sung, M.K.; Lee, D.G.; Hong, S.M.; Choe, S.Y.; Goto, T.; Kawada, T. (2014). Quercetin Protects against Obesity-Induced Skeletal Muscle Inflammation and Atrophy. Mediat. Inflamm., 2014, 834294.
Kim, Y.; Kim, C.S.; Joe, Y.; Chung, H.T.; Ha, T.Y.; Yu, R. (2018). Quercetin Reduces Tumor Necrosis Factor Alpha-Induced Muscle Atrophy by Upregulation of Heme Oxygenase-1. J. Med. Food, 21, 551–559.
Stacchiotti S, Pantaleo MA, Astolfi A, Dagrada GP, Negri T, Dei Tos AP, Indio V, Morosi C, Gronchi A, Colombo C, Conca E, Toffolatti L, Tazzari M, Crippa F, Maestro R, Pilotti S, Casali PG. Activity of sunitinib in extraskeletal myxoid chondrosarcoma. Eur J Cancer. 2014 Jun;50(9):1657-64. doi: 10.1016/j.ejca.2014.03.013. Epub 2014 Apr 2. PMID: 24703573.
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci. 2022 Feb 24;23(5):2484. doi: 10.3390/ijms23052484. PMID: 35269632; PMCID: PMC8910227.