Feeding Value of Oilseeds Rich in Omega 3 Fatty Acids as Potential Ingredients in Broiler Nutrition


  • Dumitru-Filip Iliescu
  • Tatiana Dumitra Panaite Panaite
  • Mariana Ropota Ropota
  • Arabela Untea
  • Dumitru Dragotoiu Dragotoiu


oilseeds, OMEGA-3, polyunsaturated fatty acid, poultry feed


Due to the benefits of consuming products rich in omega-3, people have become more aware of the need for a surplus of n-3 fatty acids for meat in their diet. Three oilseeds rich in omega 3 fatty acids (linseed, hemp seeds and camelina seeds) were characterized to determine their nutritional value for inclusion in broiler diets to increase the PUFA content of poultry meat. Chemical determinations revealed a different protein content ranging between 19.74% (hemp seeds) and 26.78% (linseed). In terms of polyunsaturated fatty acids, especially α-linolenic acid was determined for linseed (50.71g/100g total fatty acids), camelina (34.15g/100g total fatty acids) and hemp (14.2g/100g total fatty acids). The selected products rich in polyunsaturated fatty acids will be introduced into the feed and tested on batches of broilers to track the best growth performance.


Bhatnagar, D, Durrington, P. N., Omega-3 fatty acids: their role in the prevention and treatment of atherosclerosis related risk factors and complications, International Journal of Clinical Practice, 2003, 57(4), 305-314

Geelen, A., Brouwer, I. A., Zock, P. L., Katan, M. B., Antiarrhythmic effects of n-3 fatty acids: evidence from human studies. Current opinion in lipidology, 2004, 15(1), 25-30.

Thies, F., Garry, J. M., Yaqoob, P., Rerkasem, K., Williams, J., Shearman, C. P., Gallagher, P. J., Calder, P. C., Grimble, R. F., Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial, The Lancet, 2003, 361(9356), 477-485.

Das, U. N., Essential fatty acids: biochemistry, physiology and pathology, Biotechnology Journal: Healthcare Nutrition Technology, 2004, 1(4), 420-439.

Singh, K. K., Mridula, D., Rehal, J., Barnwal, P. Flaxseed: a potential source of food, feed and fier, Critical reviews in food science and nutrition, 2011, 51(3), 210-222.

Ivanov, S. Rashevskaya, T., Makhonina, M. Flaxseed, additive application in dairy products production, Procedia Food Sci, 2011, 1, 275–280

Morris, D. H. Linseed in the ruminant diet, adding linseed to feed enhances the fat profile of milk, Flax Council of Canada, 2008, 465-167.

Oomah, B. D., Mazza, G., Bioactive components of flaxseed: occurrence and health benefits. Phytochemicals and phytopharmaceuticals, 2000, 106-121.

Touré, A., Xueming, X., Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio‐active components, and health benefits, Comprehensive reviews in food science and food safety, 2010, 9(3), 261-269.

Rode, J. Study of autochtone Camelina sativa (L.) Crantz oil in Slovenia. Novi izzivi v poljedelstvu, Zbornik simpozija, Ljubljana, Slovenia 5-6 decembra 2002, 340-343.

Zhu, Y., Cox, R., Johnston, L. J., Reese, C., Forcella, F., Gesch, R. W., & Li, Y. Z., Effects of increasing inclusion of camelina press cake in diets fed to growing-finishing pigs on pork quality, Applied Animal Science, 2021, 37(4), 357-366.

Zubr, J., Dietary fatty acids and amino acids of Camelina sativa seed, Journal of food quality, 2003, 26(6), 451-462.

Zubr, J., Carbohydrates, vitamins and minerals of Camelina sativa seed, Nutrition & Food Science, 2010, 40(5), 523-531

Zubr, J. Qualitative variation of Camelina sativa seed from different locations, Industrial Crops and Products, 2003, 17(3), 161-169.

Matthäus, B., Zubr, J. Variability of specific components in Camelina sativa oilseed cakes, Industrial crops and products, 2000, 12(1), 9-18.

Agriculture and rural development, 2023, https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/hemp_ro#hempcultivation

Borhade, S. S., Chemical Composition and Characterization of Hemp (Cannabis sativa) Seed oil and essential fatty acids by HPLC Method, Archives of applied science research, 2013, 5(1), 5-8.

Kriese, U., Schumann, E., Weber, W. E., Beyer, M., & Brühl, L. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes, Euphytica, 2004, 137, 339-351.

Vera, C. L., Hanks, A., Hemp production in western Canada 2004. Journal of Industrial Hemp, 9(2), 79-86.

Tang, C. H., Ten, Z., Wang, X. S., Yang, X. Q., Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate, Journal of agricultural and food chemistry, 2006, 54(23), 8945-8950.

House, J. D., Neufeld, J., Leson, G., Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method, Journal of agricultural and food chemistry, 2010, 58(22), 11801-11807.

Untea, A. E., Criste, R. D., Vladescu, L., Development and validation of a liver samples preparation method for FAAS trace elements content determination, Rev. Chim-Bucharest, 2012, 63, 341-346.

Panaite, T. D., Criste, R. D., Ropota, M., Criste, V., Vasile, G., Olteanu, M., Mitoi M., Socoliuc R., Vlaicu, A. Determination of the feeding value of food industry by-products, Sci Papers Anim Sci Series, 2016, 66(21), 106-111.

Zając, M., Kiczorowska, B., Samolińska, W., Kowalczyk-Pecka, D., Andrejko, D., Kiczorowski, P., Effect of inclusion of micronized camelina, sunflower, and flax seeds in the broiler chicken diet on performance productivity, nutrient utilization, and intestinal microbial populations, Poultry Science, 2021, 100(7), 101118.

Khan, M. L., Sharif, M., Sarwar, M., Ameen, M., Chemical Composition of Different Varieties of Linseed, Pakistan veterinary journal, 2010, 30(2).

Peiretti, P. G., Meineri, G. Fatty acids, chemical composition and organic matter digestibility of seeds and vegetative parts of false flax (Camelina sativa L.) after different lengths of growth, Animal Feed Science and Technology, 2007, 133(3-4), 341-350.

Ciurescu, G., Ropota, M., Toncea, I., Habeanu, M. Camelina (Camelia sativa L. Crantz Variety) Oil and Seeds as n-3 Fatty Acids Rich Products in Broiler Diets and Its Effects on Performance, Meat Fatty Acid Composition, Immune Tissue Weights, and Plasma Metabolic Profile, J. Agr. Sci. Tech., 2016, 18, 315–326.

Alonso-Esteban, J. I., Pinela, J., Ćirić, A., Calhelha, R. C., Soković, M., Ferreira, I. C., Barros, L., Torija-Isasa, E., de Cortes Sánchez-Mata, M. Chemical composition and biological activities of whole and dehulled hemp (Cannabis sativa L.) seeds, Food Chemistry, 2022, 374, 131754

Ding, X. M., Li, D. D., Li, Z. R., Wang, J. P., Zeng, Q. F., Bai, S. P., Su, Z.W., Zhang, K. Y., Effects of dietary crude protein levels and exogenous protease on performance, nutrient digestibility, trypsin activity and intestinal morphology in broilers, Livestock Science, 2016, 193, 26-31.

Dimarogona, M., Topakas, E., Christakopoulos, P., Cellulose degradation by oxidative enzymes. Computational and structural biotechnology journal, 2012, 2(3), e201209015.

Dehghani-Tafti, N., Jahanian, R. Effect of supplemental organic acids on performance, carcass characteristics, and serum biochemical metabolites in broilers fed diets containing different crude protein levels, Animal Feed Science and Technology, 2016, 211, 109–116

Walk, C. L., Addo-Chidie, E. K., Bedford, M. R., Adeola, O., Evaluation of a highly soluble calcium source and phytase in the diets of broiler chickens, Poultry Science, 2012, 91(9), 2255-2263.

Aviagen Ross-BroilerHandbook. 2018 https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf

Toncea, I., Necseriu, D., Prisecaru, T., Balint, L. N., Ghilvacs, M. I., Popa, M., The seed’s and oil composition of Camelia–first Romanian cultivar of camelina (Camelina sativa, L. Crantz), Romanian Biotechnological Letters, 2013, 18(5), 8594-8602.

Mihoc, M., Pop, G., Alexa, E., Dem, D., Militaru, A. Microelements distribution in whole hempseeds (Cannabis sativa L.) and in their fractions, Revista De Chimie, 2013, 64(7), 776-780.

Oseyko, M., Sova, N., Lutsenko, M., Kalyna, V. Chemical aspects of the composition of industrial hemp seed products, Ukrainian Food Journal, 2019, 8(3), 544-559.

Manda, D., Giurcaneanu, M., Ionescu, L., Criste, R., Panaite, T., Popa, O., Vlădoiu, S., Ianas, O., Lipid profile after alpha-linolenic acid (ALA) enriched eggs diet: a study on healthy volunteers, Archiva Zootechnica, 2008, 11(2), 35-41.

Simopoulos, A. P., The omega-6/omega-3 fatty acid ratio: health implications, Oléagineux, Corps gras, Lipides, 2010, 17(5), 267-275.

Bozan, B., Temelli, F. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils, Bioresource technology, 2008, 99(14), 6354-6359.

Sargi, S. C., Silva, B. C., Santos, H. M. C., Montanher, P. F., Boeing, J. S., Santos Júnior, O. O., Souza, N.E., Visentainer, J. V., Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla, Food Science and Technology, 2013, 33, 541-548.

Abramovic, H., Abram, V. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil, Food Technol. Biotechnol, 2005, 43(1), 63-70.

Vonapartis, E., Aubin, M. P., Seguin, P., Mustafa, A. F., Charron, J. B. Seed composition of ten industrial hemp cultivars approved for production in Canada, Journal of Food Composition and Analysis, 2015, 39, 8-12.

Mikulcová, V., Kašpárková, V., Humpolíček, P., Buňková, L., Formulation, characterization and properties of hemp seed oil and its emulsions, Molecules, 2017, 22(5), 700.

Mridula, D., Kaur, D., Nagra, S. S., Barnwal, P., Gurumayum, S., Singh, K. K., Growth performance and quality characteristics of flaxseed-fed broiler chicks, Journal of Applied Animal Research, 2015, 43(3), 345-351.

Shen, Y., Feng, D., Fan, M. Z., Chavez, E. R., Performance, carcass cut‐up and fatty acids deposition in broilers fed different levels of pellet‐processed flaxseed, Journal of the Science of Food and Agriculture, 2005, 85(12)

Pekel, A. Y., Patterson, P. H., Hulet, R. M., Acar, N., Cravener, T. L., Dowler, D. B., Hunter, J. M., Dietary camelina meal versus flaxseed with and without supplemental copper for broiler chickens: Live performance and processing yield, Poultry Science, 2009, 88(11), 2392-2398.

Najib, H., Al-Yousef, Y. M. Performance and essential fatty acids content of dark meat as affected by supplementing the broiler diet with different levels of flaxseeds, Annual Research & Review in Biology, 2011, 22-32.

Shen, Y., Feng, D., Chavez, E. R. Effect of flaxseed processing on its true metabolizable energy values for adult chicken, Journal of the Science of Food and Agriculture, 2004, 84(6), 551-555.

Shen, Y., Chavez, E. R., Nutrient utilisation and performance of broilers in response to processed flaxseed dietary levels and vitamin B6 supplementation, Journal of the Science of Food and Agriculture, 2003, 83(9), 960-965.

Slominski, B. A., Meng, X., Campbell, L. D., Guenter, W., Jones, O. The use of enzyme technology for improved energy utilization from full-fat oilseeds, Part II: Flaxseed. Poultry Science, 2006, 85(6), 1031-1037.

Thacker, P. A., Willing, B. P., Racz, V. J., Performance of Broiler Chicks Fed Wheat-based Diets Supplemented with, Journal of Animal and Veterinary Advances, 2005, 4(11), 902-907.

Krasicka, B., Kulasek, G. W., Swierczewska, E., & Orzechowski, A., Body gains and fatty acid composition in carcasses of broilers fed diets enriched with full-fat rapeseed and/or flaxseed, Archiv für Geflügelkunde, 2000, 64(2), 61-69.

Betti, M., Schneider, B. L., Wismer, W. V., Carney, V. L., Zuidhof, M. J., Renema, R. A., Omega-3-enriched broiler meat: 2. Functional properties, oxidative stability, and consumer acceptance, Poultry Science, 2009, 88(5), 1085-1095.

Jia, C. L., Wei, Z. H., Yu, M., Wang, X. Q., & Yu, F., Effect of in-ovo feeding maltose on the embryo growth and intestine development of broiler chicken, Indian Journal of Animal Sciences, 2011, 81(5), 503-506.

Taulescu, C., Mihaiu, M., Bele, C., Matea, C., Dan, S. D., Mihaiu, R., Lapusan, A. Antioxidant Effect of Vitamin E and Selenium on Omega-3 Enriched Poultry Meat, Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 2011, 68(2).

Skřivan, M., Englmaierová, M., Taubner, T., Skřivanová, E., Effects of dietary hemp seed and flaxseed on growth performance, meat fatty acid compositions, liver tocopherol concentration and bone strength of cockerels, Animals, 2020, 10(3), 458.

Mahmoudi, M., Farhoomand, P., & Nourmohammadi, R. Effects of different levels of hemp seed (Cannabis sativa L.) and dextran oligosaccharide on growth performance and antibody titer response of broiler chickens, Italian Journal of Animal Science, 2015, 14(1), 3473.

Kalmendal, R., Hemp seed cake fed to broilers, 2008

Eriksson, M., Wall, H., Hemp seed cake in organic broiler diets, Animal feed science and technology, 2012, 171(2-4), 205-213.

Hess, J. B., Mosjidis, J. A. Effect of sunn hemp seed inclusion in broiler starter diets on live performance attributes, Journal of Applied Animal Research, 2008, 33(2), 105-108.

Vispute, M. M., Sharma, D., Mandal, A. B., Rokade, J. J., Tyagi, P. K., Yadav, A. S., Effect of dietary supplementation of hemp (Cannabis sativa) and dill seed (Anethum graveolens) on performance, serum biochemicals and gut health of broiler chickens, Journal of animal physiology and animal nutrition, 2019, 103(2), 525-533.

Juodka, R., Nainienė, R., Juškienė, V., Juška, R., Leikus, R., Kadžienė, G., Stankevičienė, D. Camelina (Camelina sativa (L.) Crantz) as feedstuffs in meat type poultry diet: A source of protein and n-3 fatty acids, Animals, 2022, 12(3), 295.