Effect of Feed Additive on Base of L-carnitine in Drinking Water on Internal and External Egg Quality

Cyril Hrnčár*¹, Martin Gašparovič², Ján Weis¹, Henrieta Arpášová¹, Veronika Pistová¹, Martin Fik¹, Jozef Bujko³

¹Department of Poultry Science and Small Animal Husbandry

²Department of Animal Nutrition

³Department of Genetics and Breeding Biology

Faculty of Agrobiology and Food Resources, Slovak University of Agriculture,

Nitra, Slovakia

Abstract

The objective of present study was to investigate the effect of feed additive on base of L-carnitine (30%) on some parameters of egg quality. Totally 40 White Leghorn laying hens were divided in two groups: control group (n=20) received drinking water without any additives and experimental group (n=20) received feed additive in dose 1 ml per 1.2 l of drinking water for a period of 5 days in 2 week intervals from 26 to 56 week of age. Hens in both groups were feeding ad libitum with commercial layer diet. A total of 200 eggs (100 eggs from both group) were collected to study for external and internal quality of eggs. Albumen index and Haugh unit were improved (p<0.05), while yolk index and yolk color were not affected by administration of L-carnitine (p>0.05). The albumen percentage increased (p<0.05) and that yolk percentage decreased (p<0.05) in response to supplementation of L-carnitine. Addition of L-carnitine did not influence egg weight, egg shape index and egg shell quality (shell percentage, shell thickness, shell strength).

Key words: egg quality, feeding, hen, laying, L-carnitine.

1. Introduction

L-carnitine is a water-soluble quaternary amine with a low molecular weight, and occurs naturally in microorganisms, plants and animals [1].

L-carnitine is synthesized in vivo from lysine and methionine, and it is formed with contributions from vitamins B_3 , B_6 , B_{12} , C and folic acid, as well as iron [2-4].

It has been reported that L-carnitine has two major functions. The best known is to facilitate the transport of long-chain fatty acids across the inner mitochondrial membrane. L-carnitine also facilitates the removal of short and medium-chain

fatty acids from the mitochondria that accumulate as a result of normal and abnormal metabolism [5-7].

Thus, dietary L-carnitine supplementation promotes the β -oxidation of these fatty acids in order to generate adenosine triphosphate (ATP) energy and improve energy utilization [8-10].

Consequently, L-carnitine supplementation in diets reduces the amount of long-chain fatty acids availability for esterification to triacylglycerols and storage in the adipose tissue [7, 11].

In addition, L-carnitine has secondary functions, including the containment, buffering and removal of potentially toxic acyl groups from cells, equilibrating the ratio of free CoA and acetyl-CoA between the mitochondria and cytoplasm, participating in biological processes such as regulation of gluconeogenesis, stimulating fatty acid and the

^{*} Corresponding author: Cyril Hrnčár, + 421 37 6414744, cyril.hrncar@uniag.sk

metabolism of ketones, branched-chain amino acids, triglycerides and cholesterol [10].

Poultry diets are composed mainly of maize and soyabean and plant products are low in carnitine, while animal-derived feedstuffs are rich in L-carnitine. Poultry feeds contain high percentages of cereals and this situation may lead to a deficiency of carnitine [12,13].

Consequently, L-carnitine supplementation in diet or in drinking water would be useful for poultry [13-15].

The objective of this study was to evaluate the effect of feed additive on base of L-carnitine supplementation on external and internal egg quality parameters of hens during laying period.

2. Materials and methods

Hens were placed in outdoor unheated breeding pens with free range. Birds were exposed to natural light as a practiced in rural areas of South-West Slovakia.

A total 40 White Leghorn hens were randomly divided into two groups (control and experimental - preparation with 30 % of L-carnitine). Laying hens in the control (C, n=20) and experimental groups (E, n=20) received a feed of the same nutritional value and laving hens experimental group were supplemented drinking water by feed additive (Biofaktor, Sp. z.o.o., Skierniewice, Poland) on the base L-carnitine (30.00 %), arginin chloride (19.33 %), taurine (13.33 %), magnesium gluconate (6.67 %), Nacetylocysteine (6.67 %), biotine (0.00667 %), sorbitol (0.30 %), aromatic additives (5.28 %) and vehiculum (wheat feed flour ad 1000 g). Laying hens were feeeding ad libitum with commercial layer diet (Mevit s.r.o, Dvory nad Žitavou, Slovak Republic). The nutritive values of the feed mixture are presented in Table 1.

Table 1. Nutritional value in 1 kg complete feed mixture

Nutrient	Unit	Value
Metabolizable energy	MJ	11.50
Crude protein	g	153.00
Fat	g	24.00
Fibre	g	60.00
Lysine	g	7.00
Methionine	g	3.50
Calcium	g	28.00-45.00
Phosphorus	g	5.00
Sodium	g	1.20-2.50
Cooper	mg	4.00
Zinc	mg	60.00
Manganese	mg	40.00
Iron	mg	40.00
Vitamin A	m.j.	8000.00
Vitamin D ₃	m.j.	1600.00
Vitamin E	mg	10.00

The study was performed in the laboratory of the Department of Poultry Science and Small Animal Husbandry at the Faculty of Agrobiology and Food Resources of Slovak University of Agriculture in Nitra. A total of 200 eggs (100 eggs from both group) were collected to study for external and internal quality of eggs.

Egg weight was individually determined to 0.01g accuracy using a laboratory scale Owa Labor (VEB Wägetechnik Rapido, Germany). Egg length (along the longitudinal axis) and egg width (along the equatorial axis) were measured with a

micrometer. Egg shape index was calculated as the ratio of egg width to length (%) by the method of [16].

After the eggs were broken, egg shells were washed with water and dried in order to clean the remaining albumen. Following this procedure, shell weight (with membrane) was measured using a laboratory scale Owa Labor (VEB Wägetechnik Rapido, Germany) and the percentage proportion of the shell in the egg was determined. Shell thickness (with membrane) was measured at the sharp poles, blunt poles and equatorial parts of

each egg. Shell thickness was obtained from the average values of these three parts. The egg shell strength was determined manually using an Egg Crusher device (VEIT Electronics, Moravany, Czech Republic).

The albumen weight was calculated from the difference between the egg weight, and the yolk and shell weight and the percentage proportion of the albumen in the egg was determined. Albumen index (%) was determined by the method of [17] on the basis of the ratio of the thick albumen height (mm) measurement taken with a micrometer to the average of width (mm) and length (mm) of this albumen with 0.01 mm accuracy. Haugh unit was calculated according to the procedure of [18].

Yolk weight with 0.01 g accuracy was determined using the laboratory scale Owa Labor (VEB Wägetechnik Rapido, Germany) and its percentage proportion was calculated. Yolk index (%) was measured on the basis of the ratio of the yolk height (mm) to the yolk width (mm) by the method of [19] using micrometer with 0.01 mm accuracy. Yolk colour was determined with the scale of Hoffman La Roche (Hoffman–La Roche, Switzerland).

Data were analyzed using analysis of variance [20]. Significant difference was used at 0.05 probability level and differences between groups were tested using the Duncan's Multiple Range Test [21].

3. Results and discussion

The effects of dietary L-carnitine on egg quality of laying hen are shown in Table 2.

In this experiment, application of L-carnitine in feed additive not affect egg weight, which is in agreement with the findings of [22,23]. [22] reported that supplementation of 50, 100, or 500 ppm of dietary L-carnitine did not affect egg weight during the late laying period from 65 to 73 wk in a Hungarian brown hybrid line. These investigators reported a lower also percentage in eggs of hens consuming dietary Lcarnitine. [23] reported that egg weight was not affected by supplementation of 50 ppm of Lcarnitine in the drinking water of 47-wk-old laying hens for 8 wk. Also [24] found that supplementation of L-carnitine to hen diets did not affect egg weight.

Table 2. Effect of feed additive on base of L-carnitine

on egg quanty				
Parameter	Control	Experimental		
Egg weight (g)	61.27±5.06	61.69±5.24		
Egg shape index (%)	75.69 ± 2.24	75.79 ± 2.17		

Values shown are mean \pm SD (standard deviation)

Table 3 shows that values of albumen index and Haugh unit were increased by addition of carnitine [22] in laying hens. They concluded that L-carnitine has a beneficial effect on albumen quality and could modify the components of the edible part of the egg.

Table 3. Effect of feed additive on base of L-carnitine on albumen quality

Parameter	Control	Experimental		
Albumen weight (g)	36.71±2.86	37.38±2.38		
Albumen percentage (%)	59.95±3.05	60.62 ± 3.27^{b}		
Albumen index (%)	87.11±11.29	89.83 ± 11.76^{b}		
Haugh units	87.53 ± 3.28	89.92 ± 3.44^{b}		

Values shown are mean \pm SD (standard deviation)

As shown Table 4, in agreement with this experiment, [22] reported that L-carnitine supplemented diets decreased (p<0.01) yolk weight and yolk percentage. An additional possibility is that the presence of carnitine in the yolk may have affected the efficiency of enzymes involved in fatty acid metabolism. L-carnitine plays a well established role in lipid metabolism, so it may induce some favourable modifications in poultry products, particularly eggs and meat [25].

Table 4. Effect of feed additive on base of L-carnitine on volk quality

on your quanty				
Parameter	Control	Experimental		
Yolk weight (g)	18.42±1.89 ^a	16.12±1.62		
Yolk percentage (%)	30.01 ± 1.76^{a}	29.55 ± 1.72		
Yolk index (%)	52.17±2.53	52.11±2.51		
Yolk colour (°LR)	10.27 ± 1.18	10.34 ± 1.22		

Values shown are mean \pm SD (standard deviation)

The effects of dietary L-carnitine on egg quality of laying hen are shown in Table 5. In this study, feeding supplemental carnitine had no effect on egg shell breaking strength and egg shell thickness. [26] also reported that the feeding of supplemental carnitine to laying quails had no effect on egg shell thickness. Similar to the results of the present study, egg shell thickness was not affected by carnitine [22].

Table 5. Effect of feed additive on base of L-carnitine on egg shell quality

	1 /	
Parameter	Control	Experimental
Egg shell weight (g)	6.15±0.67	6.07±0.56
Egg shell percentage (%)	10.04 ± 0.58	9.83 ± 0.47
Egg shell thickness (μm)	379.18 ± 22.53	677.53±21.49
Egg shell strength (N.cm ⁻²)	29.84 ± 4.96	29.78 ± 4.62

Values shown are mean \pm SD (standard deviation)

4. Conclusions

In the study, data revealed that addition of feed additive on base of L-carnitine resulted positive affected albumen quality parameters but decreased some yolk parameters. The experiment indicated non significant effect of L-carnitine supplementation on egg and egg shell quality parameters.

References

- 1. Bremer, J. Carnitine metabolism and functions. Physiological Reviews, 63, 1983, 1420-1480.
- 2. Mast, J., Buyse, J. Goddeeris, B.M. Dietary L-carnitine supplementation increases antigen-specific immunoglobulin G production in broiler chickens. British Journal of Nutrition, 83, 2000, 161-166.
- 3. Golzar Adabi, S.H., Cooper, R.G, Ceylan, N., Corduk, M. L-carnitine and its functional effects in poultry nutrition. Worlds Poultry Science Journal, 67, 2011, 277-288.
- 4. Michalczuk, M., Łukasiewicz, M., Niemiec, J., Wnuk, A., Mroczek-Sosnowska, N. Effect of L-carnitine on performance and dressing percentage of broiler chickens. Annals of Warsaw University of Life Sciences, 51, 2012, 89-99.
- 5. Matalliotakis, I., Koumantaki, Y., Evageliou, A., Matalliotakis, G., Goumenou, A., Koumantakis, E. L-carnitine levels in the seminal plasma of fertile and infertile men: correlation with sperm quality. International Journal of Fertility, 45, 2000, 236-240.
- 6. Buyse, J., Janssens, G. P., Decuypere, J. The effects of dietary L-carnitine supplementation on the performance, organ weights and circulating hormone and metabolite concentrations of broiler chickens reared under a normal or low temperature schedule. British Poultry Science, 42, 2001, 230-241.
- 7. Xu, Z.R., Wang, M.Q., Mao, H.X., Zhan, X.A., Hu, C.H. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poultry Science, 82, 2003, 408-413.
- 8. Rabie, M.H., Szilagyi, M., Gippert, T. Effects of dietary L-carnitine supplementation and protein level on performance and degree of meatness and fatness of broilers. Acta Biologica Hungarica, 48, 1997, 221-239.

- 9. Neuman, S.L., Lin, T.L., Hester, P.Y. The effect of dietary carnitine on semen traits of white leghorn roosters. Poultry Science, 81, 2002, 495-503.
- 10. Corduk, M., Ceylan, N., Ildiz, F. Effects of dietary energy density and L-carnitine supplementation on growth performance, carcass traits and blood parameters of broiler chickens. South African Journal of Animal Science, 37, 2007, 65-73.
- 11. Barker, D.L., Sell, J.L. Dietary carnitine did not influence performance and carcass composition of broiler chickens and young turkeys fed low or high-fat diets. Poultry Science, 73, 1994, 281-287.
- 12. Baumgartner, M., Blum, R. Typical L-carnitine contents in feedstuffs. In: Baumgartner, M. (Ed.): Lcarnitine in animal nutrition, Lonza, Basel, Switzerland, 1997, 102.
- 13. Parizadian, B., Ahangari, Y.J., Shams Shargh, M., Sardarzadeh, A. Effects of different levels of L-carnitine supplementation on egg quality and blood parameters of laying Japanese quail. International Journal of Poultry Science, 10, 2011, 621-625.
- 14. Arslan, C., Citil, M., Saatci, M. Effects of Lcarnitine administration on growth performance, carcass traits and some serum component of Japanese quail. Archiv für Geflügelkunde, 68, 2004, 111-114.
- 15. Hrnčár, C., Verguliaková, S., Svorad, P., Weis, J., Arpášová, H., Mindek, S., Fik, M., Bujko, J. Effect of L-carnitine supplementation on fattening and carcass parameters of broiler chickens. Acta fytotechnica et zootechnica, 18, 2015, 15-19.
- 16. Anderson, K.E., Tharrington, J.B., Curtis, P.A., Jones, F.T. Shell characteristics of eggs from historic strains of single comb white leghorn chickens and relationship of egg shape to shell strength. International Journal of Poultry Science, 3, 2004, 17-19.
- 17. Alkan, S., Karabağ, K., Galiç, A., Karsli, T., Balcioğlu, M.S. Effects of selection for body weight and egg production on egg quality traits in Japanese quails (*Coturnix coturnix japonica*) of different lines and relationships between these traits. Kafkas Universitesi Veteriner Fakultesi Dergisi, 16, 2010, 239-244.
- 18. Haugh, R. The Haugh unit for measuring egg quality. U.S. Egg & Poultry Magazine, 43, 552-555, 573.
- 19. Funk, E.M. The relation of yolk index determined in natural position to the yolk index as determined after separating the yolk from the albumen. Poultry Science, 27, 1948, 367.
- 20. SAS User's Guide: Statistics version 6.12 Edn., SAS Institute, Inc., Cary, NC., 2001, USA.
- 21. Duncan, D.B. Multiple Range and Multiple F-test. Biometrics, 11, 1955, 1-42.
- 22. Rabie, M.H., Szilagyi, M., Gippert, T. Effects of dietary L-carnitine on the performance and egg quality of laying hens from 65-73 weeks of age. British Journal of Nutrition, 78, 1997, 615-623.

- 23. Celik, L.B., Tekeli, A., Ozturkcan, O. Effects of supplemental L-carnitine in drinking water on performance and egg quality of laying hens exposed to a high ambient temperature. Journal of Animal Physiology and Animal Nutrition, 88, 2004, 229-233. 24. Zhai, W., Neuman, S.L., Latour, M.A., Hester, P.Y. The effect of male and female supplementation of L-carnitine on reproductive traits of white leghorns. Poultry Science, 87, 2008, 1171-1181.
- 25. Golzar Adabi, S., Moghaddam, G., Taghizadeh, A., Nematollahi, A., Farahvash, T. Effect of Lcarnitine and vegetable fat on broiler breeder fertility, hatchability, egg yolk and serum cholesterol and triglyceride. International Journal of Poultry Science, 5, 2006, 970-974.
- 26. Yalçın, S., Ergün, A., Erol, H., Yalçın, S., Özsoy, B. Use of L-carnitine and humate in laying quail diets.. Acta Veterinaria Hungarica, 53, 2005, 361-370.