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Abstract

Body size represents a key morphological trait that indicates how biotic communities respond to environmental
changes and shape ecosystems processes. In agriculture, many carnivorous arthropods, such as arachnids and beetles,
represent valued crop pest predators that are used as a sustainable alternative to pesticide use. The scope of this
review is to highlight how the body size of arthropod pest predators is influenced by various agricultural practices
and, conversely, how it influences the predation efficiency of these organisms and their overall capacity to provide
the ecological service they are valued for. We synthesize existing knowledge on the topic and discuss the ways
through which body size shapes the resistance, behaviours and hunting efficiency of pest predators. We emphasis the
advantages that larger body size offers, such as, increased prey consumption, feeding range and fecundity, while also
accounting for potential disadvantages such as reductions of desiccation resistance, predator evasion capacity and the
increased risk of toxic compound bioaccumulation. To conclude, we highlight knowledge gaps and propose future
research directions which may serve to further enhance and popularize the use of natural pest predators as one of the
means towards efficient ecosystem management and sustainable agriculture.
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1. Introduction Land use changes, associated among other with

agriculture, represent a dominant driver of
The current human population of the world and the worldwide ecosystem change and service loss [8].
predicted rates of its expansion [1] pose the need for Decline of ecosystem services such a pollination and
food security if we are to safely and sustainably live pest control pose a capital threat for agriculture,

on our planet [2]. In this context, the role of biodiversity and human society [9]. Efficient
agriculture is extremely important both in terms of ecosystem management and sustainable practices

production, as well as impact [3]. Though vital for such as increase of non-crop habitats and organic
food production, agricultural landscapes also provide crops and reduction of intensive tillage and pesticide
habitat for multiple insect species, many which use hold promise to reduce and eventually reverse
contribute to provide invaluable ecosystem services the biodiversity decline of agricultural landscapes
such as pollination [4] and pest control [5]. Predatory [10]. In order to reach such difficult goals, it is
arthropods such as spiders (order Araneae) and important to increase our understanding of how land
ground Dbeetles (family Carabidae) represent use, biodiversity and ecosystem services interact
validated biological control agents that have the from a functional standpoint [11].

potential to reduce the use of pesticides for Functional traits represent measurable individual
suppressing pest populations [6,7]. features that shape the fitness and role of

organisms within their habitats [12]. Given their
cross-taxonomic nature and link to ecosystem
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biodiversity and ecosystem functions and
consequently to help in sustainable agriculture
[13,14].

Among the functional traits of crop pest predators,
body size received much interest, based mainly, on
its importance to shape predator-prey trophic
interactions within agricultural landscapes and
particularly in crops [15]. This morphological trait of
spiders and ground beetles has been also addressed
with regard to its importance for the dynamic of such
communities in varied contexts, such as habitat
colonization and survival to harsher environmental
conditions [16,17]. For example, large body size
variations within predatory communities have the
potential to generate intraguild predation in certain
contexts [18].

Aside from its role in trophic interactions and
adaptation to environment, body size can also be
used as a reliable indicator of environmental
impact [19]. Body size and other morphometric
characteristics of arthropods have become
increasingly popular for bioindication and
bioassessment of habitats, particularly in studies
addressing pollution and toxicity [20]. Research
addressing body size variations generally
highlights community weighted variations of this
trait in response to all types of habitat
disturbances, tendencies of which shall be further
discussed throughout this paper along with other
relevant findings.

Though research on this topic seems to become
more popular, the need to structure and interpret
existing information should not be overlooked.
Consequently, this review aims to synthesize the
current state of knowledge with regard to the body
size of arthropod pest predators and to highlight
existing tendencies, inconsistencies and knowledge
gaps. By doing so, we hope to provide a clearer
understanding of the topic and to consolidate part of
the research needed to support a more sustainable
agriculture and ecosystem management.

2. Materials and methods

Our review proposes a synthetic and analytical
analysis of the scientific research related to the
body size of arthropod pest predators (i.e. spiders
and ground beetles).

Relevant scholarly articles were obtained by two
complementary search methods, namely a Web of
Science query (Table 1) and by the additional use
of the snowball method. A total of 71 articles was
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used for the synthesis of our review, all dating
from 2000 onwards. While we acknowledge the
possibility that some bibliographic sources were
not found, we consider that we have gathered
sufficient references to be able to draw clear and
realistic conclusions with regard to the tendencies
and findings reported in the literature concerning
to our topic.

Table 1. Web of Science Boolean search string
TOPIC: arthropod* OR spider* OR '"ground
beetle*" OR carabid* OR arachnid* "pest
predator*"

AND

TOPIC: "body size" OR morphology OR
biomass OR "bodied" OR trait*
AND
TOPIC: agriculture* OR crop* OR farm* OR
agroecosystem®* OR agrarian

Results were structured based on drivers that
influence the body size of the studied taxa and on
the effects that variations of this trait have on the
pest control ecosystem service.

3. Effects of land use and
agricultural practices
predator body size

intensity of
on arthropod pest

Most of the screened literature addressed the
effect of environmental parameters on the body
size of crop pest predators as opposed to the effect
that community weighted mean (CWM) values of
this trait have on the provisioning of pest control.
This disparity emphasizes, on one hand the
concern of researchers and stakeholder with
regard to the effects of land use, habitat integrity
and agricultural schemes and, on the other, the
need for more studies to address the effect of
CWM body size of natural enemies on their role
as pest suppressors.

General patterns of body size dynamics

The majority of the screened literature indicates a
clear and consistent pattern in the response of mean
body size within the communities of arthropod pest
predators. Land use intensification and generally
lead to strong reductions of the CWM body size of

both spiders and ground beetles (Table 2).
Unsustainable agricultural practices such as
increased tillage, strong pesticide use and
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monocultures act as selective pressures that favour
smaller species and exclude larger bodied taxa from

the impacted communities [65,74].

Table 2. Drivers and trends of body size variation among crop pest predators

. Body size
. . Action
Driver Action general References
tendency
tendency
. 21,22, 23,24,25,26,27,28, 29, 30, 31,
Non crop habitat Increase 32,33, 34
Land use Increase
Landscape 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
simplification and Decrease 46,47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
fragmentation 57,58, 59, 60, 61, 62, 63, 64
Land management
. : 65, 66, 67, 68, 69, 70, 71, 72,73, 74
ntensity
Decrease
Agricultural
. o Increase
practice Pesticide use 75,776,717, 78
Sustainable land Increase 79, 80, 81, 82
management
Such outcomes are consistent across most type of capacity, shorter lifespan and  reduced

agricultural habitats and crops. Studies in
grasslands highlighted how arthropod
communities from such habitats were impacted by
land use intensification, leading to the dominance
of smaller and more mobile species [62,64]. The
abundance of smaller sized arthropod predators
was also observed in vineyards, cereal and oilseed
rape fields [28,59,73].

Conversely, reduced intensity of land use and the
implementation of sustainable measures such as
organic farming, reduced tillage and maintenance
of diverse landscapes supported a greater number
of larger bodied arthropods as well as a more
diverse community in terms of body size classes
[67,75]. Such findings show that agricultural
practices act as filters of arthropod pest predator
communities based on body size and that
sustainable practices can alleviate the impact
within the studied communities.

The trends in the relationship between habitat
disturbance and body size of arthropod pest
predators seem to be consistent both for intra and
inter specific levels. Smaller bodied individuals
are found in most disturbed habitats. Species with
reduced body size are favoured in impacted
habitats most due their increased dispersal
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requirements which lead to communities with
lower CWM body size with increasing impact
level [25,42,45]. This constant and clear
relationship between body size and level of habitat
impact seems to constitute a central pattern of pest
predator ecology. However, more recently, few
exceptions have been reported, all showing the
opposite trend and addressing tropical agricultural
habitats [83,84]. We consider these few results to
be scientifically very important since they indicate
that arthropod body size seems to increase along
with  agricultural impact in the tropics.
Additionally, research in the aforementioned
habitats is still scarce and growing more important
in the context of increased forest conversion to
agricultural habitats in the tropics.

Pesticide pollution represents another key driver
that has been associated with the body size
decrease of crop pest predators. Though not as
abundantly addressed as habitat conversion,
research on the effect of pesticide pollution on our
communities of  interest showcase and
unequivocally decrease of body size for spiders, as
well as ground beetles [34, 75, 76]. Furthermore,
pesticide toxicity has been documented to reduce
the fecundity of crop pest predators, exacerbate
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sexual dimorphism and in certain instances to
stronger impact females [75,76,77]. We consider
such findings to highlight the danger that
increased pesticide use poses to non-target taxa
such as predatory arthropods. Aside from the
direct effects such as body size reduction or
mortality, increased pesticide use further impacts
the capacity of crop pest predators to efficiently
reproduce and hunt through body size asynchrony
between sexes, reduced fecundity and behavioural
changes related to hunting and thermoregulation.

Driving mechanism of body size responses to
environmental changes

Mechanism that determines body size change in
arthropod pest predators relate to the intrinsic
characteristics of the species present as well as to
the characteristics of agricultural landscapes and
habitats where they dwell. In order to better
understand community changes, one must
examine multiple traits of the comprising species.
Larger species are generally filtered due to the life
history constraint they possess. More than often,
these individuals have lower reproductive output,
slower development rates and higher requirement
of resources, all of which make them prone to
reduction or extinction in intensely agriculturally
impacted habitats [13,33].

The dispersal ability of predatory ground beetles
and carabids is very closely linked to their body
size and ability to withstand unfavourable
environmental conditions. It is common among
smaller species of predatory arthropods to possess
highly developed dispersal traits, ballooning
capacity for spiders and functional wings for
carabids, which enable them to evade certain
disturbances, as well as to hastily recolonize
available habitats [62,64].

Habitat characteristic and landscape configuration
influence arthropod pest predators through multiple
mechanisms such as availability of food,
microhabitat conditions and shelter availability.
Structurally complex landscapes, such as the ones
with non-crop habitats (flower strips, riparian buffers
and forest patches) support communities with a
wider range of body size classes and favour larger
predators [28,59,73]. Additionally, research indicates
that larger predators, such as the active hunting
spiders of the genus Pardosa, exhibit higher
fecundity in crops connected to forested habitats,
thus promoting the increase of CWM body size
within their respective communities [59].
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Research gaps and possible research directions
concerning the response of arthropod pest
predator body size to environmental drivers
Despite the available and growing knowledge,
multiple questions remain unanswered in regard to
the relationship between environmental drivers
and the body size of arthropod crop pest predators.
The scarcity of long-term research is a prevalent
issue in ecology in general and subsequently in the
case of our topic. The few studies that we found
highlight two crucial aspects to be considered by
researchers and stakeholders alike.

Given the snapshot nature of the research, it is
probable that at least some of the characteristics of
agriculturally impacted communities have been
influenced by historic pressures [35]. Given such a
hypothesis, there is a real risk that research
addressing environmental impact might amplify the
impact of certain pressures, lack to observe their real
effects and misunderstand the mechanisms through
which environmental changes shape biotic
communities, their traits and functions.

The effect of sustainable measures take time to
showcase community changes. Even in the case of
fast reproducing communities such as arthropods.
As such, it is important to undertake long term
studies that highlight the time lapse necessary for
beneficial measures to improve the condition of
natural predators and their capacity for pest
control [35,56].

Research in tropical agricultural landscapes
should constitute a priority in the context of
increased land conversion form forests to
agricultural land in such landscapes. Existing
research suggest that different trends exist in the
relationship between pest predator body size and
environmental pressures [83,84]. More research in
this direction is needed in order to verify the
observed trend and to Dbetter understand
underlying mechanisms related to habitat and
landscape structure or trophic interactions.

Other potential research directions we could
identify based on the scarcity of available research
and on the needs of this scientific area include the
development of trait-based models and their
application in sustainable agriculture practices, the
study of the effects of climate change and invasive
species on the body size and other traits of natural
enemies and the exploration of laboratory and
mesocosm protocols for the rearing of efficient
crop pest predators.
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4. The Influence of predator body size on the
efficiency of pest predation

Body size represents perhaps the most important
functional trait that determines the ecological
interactions of arthropod crop pest predators and
their capacity to provide the ecosystem service
they are valued for. It is generally considered that
larger predators possess a broader feeding
spectrum and an increased capacity for more
abundant and larger prey consumption [85]. These
factors serve to enhance pest regulation services,
yet, their effect appears to be species and context
dependent.

The relationship between body size and predation
capacity

Generally, a strong and positive relationship is
observed throughout the available literature with
regard to the increase in predator body size and
prey consumption. The trend is consistent across
taxa, with both larger spiders and carabids shown
to be able to consume a wider range of prey and to
feed at higher rates than their smaller counterparts
[86,87,88]. In field and other types of
experimental studies shown that larger spiders can
consume a higher range of prey sizes, in many
cases being the dominant force of the trophic
interactions within the arthropod communities that
include them [89,90]. Similarly, larger carabids
have been shown to exhibit similar trends,
consuming larger amounts of food, either weed
seeds or invertebrate pests and usually of larger
sizes as their body size grew [27, 88].

Larger arthropod cop pest predators seem to exert
top-down control more effectively and consistently
across heterogenous and well-connected agricultural
landscapes [87]. Research that addressed the benefits
of organic farming also showed that less disturbed
and unpolluted treatments supported predatory
arthropod communities with larger individuals that
generated more efficient pest suppression, especially
when located in structurally complex habitats and
landscapes [86, 87].

Trait Interactions and Compensatory Mechanisms
Predator body size represents an efficient indicator
of predation efficiency. However, it is clear that it
does not shape pest suppression solely on its own,
but rather in interaction with other functional traits
of the predator and of the prey. Functional traits
such as activity period, hunting strategy along
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with foraging behaviours, such as aggression,
determine, along with habitat affinity, the
efficacity of predation and pest suppression
[86,87,]. An interesting body of research showed
that smaller spiders exhibited stronger foraging
aggressivity that enabled them to compete and
even surpass larger predators in certain contexts
[90,91]. Such compensatory effects serve to
highlight that body size is not alone in predicting
predation efficiency and that behaviours can serve
as buffers against morphological limitations
[90,91], thus emphasizing the importance of
ethological aspects in the study of arthropod crop
pest predators.

It is important to mention that the aforementioned
type of compensations has been documented
preponderantly for active hunting taxa (i.e. wolf
spiders), where movement patterns and aggression
can serve as dominant factors of predatory
efficiency [90,91]. It is possible that the same type
of mechanisms may not apply for taxa with
different hunting strategy, such as web building
spiders and ambush predators, in the case of which
more research is needed.

Functional Diversity and Complementarity

Variations of body size within predatory arthropod
communities can enhance the efficiency of the
pest  predation  service  through  niche
complementarity. More functionally diverse
predator communities are able to target different

sized pests and more diverse pests, thus
guaranteeing a more complete and time
continuous pest control service [27,89,90]. For
example, carabid communities with more

diversified body size classes were found to be
more efficient overall for pest regulation by
consuming an increased number of prey species,
in various life stages and within multiple habitat
and microhabitat types [89].

The trait and the functional diversity that
characterize pest communities are, evidently, also
highly relevant for the efficiency of the pest
control service, yet rarely addressed by the
existing research. The size, mobility, defence
mechanism and behaviour of the prey are clearly
factors that determine the efficiency of the pest
control service.

Based on such concepts, it is possible to assume
that larger and less mobile predators may prove
ineffective in consuming highly agile or defensive
pests, while smaller, more mobile predators, could
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access smaller, cryptic and concealed pest prey.
As in the case of predators, the traits, functional
diversity and behaviour of prey is often context
dependent and associated with habitat and
landscape characteristics. For example, simplified
landscapes support a higher number of small
predators that may not access larger prey classes
and impact larger predators which may suffer
from the reduced availability of accessible prey
and exposure to harsh elements and higher trophic
predators [86].

Research gaps and possible research directions
concerning the relationship between predator
body size and pest control efficiency

Despite the general consensus that predator body
size strongly influences predation efficiency and
prey accessibility, some inconsistencies and areas
with little research still exist.

The idea that behaviour may be more important
than body size deserves more research given the
existence of instances where it was prevalent over
body size [90,91]. However, we consider worth to
mention that this compensatory mechanism seems
to be species and context specific. Research in this
direction would benefit from the study of the most
used predator species, first standalone and then in
community, keeping in mind that trophic
interactions may produce different outcomes
compared to monospecific experiments.

Another potentially rewarding research direction
is related to the mechanisms that govern intraguild
predation. In unfavourable contexts, mixed size
predatory arthropod communities shown increased
intraguild predation and other antagonistic
interactions that ultimately decreased the pest
control service [35].

5. Conclusions

The body size of arthropod pest predators
represents one of the key traits that structure the
capacity of these communities to provide the pest
control service that they are valued for. Research
focused mainly on how land use and intensive
agricultural practices shaped the body size of our
studied taxa and to a lesser degree on how
variations of this trait influence the role of crop
pest predators in ecosystems. It is generally
observed that any type of agricultural pressures
reduces the body size of spiders and ground
beetles and their capacity to suppress crop pests.
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Based on the scare existing research, the
relationship between impact and body size seems
to be exactly opposite in the tropics, direction
which should be better studied in the future.

Body size seldom acts alone to determine
predation efficiency. It is often associated with
other traits or, in certain instances, compensated
by behaviour. Additionally, without accounting
for the functional traits of pests, it is likely that
predictions of predator efficacy remain
incomplete. Future research should explore
predator and prey traits conjointly, further address
behavioural and ecological compensations, and
prioritize  standardized and  longer-termed
approaches which are rarely encountered. A better
understanding of the functional ecology of pest
predators represents a perquisite of sustainable
agriculture and ecosystem management and most
likely a challenging and promising research area.
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